
Filter Objects

Filter Objects
Introduction

A Filter object manages a single filter on a controller. It represents the control algorithm
used to control a motor in a closed-loop system. The Filter contains an algorithm, a set
of coefficients, inputs, and an output. Its primary responsibility is to take the difference
between the command and actual positions and then calculate the output based on the
control algorithm and coefficients.

For simple systems, there is a one-to-one relationship between the Axis, Filter, and
Motor objects.

| Error Messages |

Methods

Create, Delete, Validate Methods
 mpiFilterCreate Create Filter object

 mpiFilterDelete Delete Filter object

 mpiFilterValidate Validate Filter object

Configuration and Information Methods
 mpiFilterConfigGet Get Filter configuration

 mpiFilterConfigSet Set Filter configuration

 mpiFilterFlashConfigGet Get flash configuration for Filter

 mpiFilterFlashConfigSet Set flash configuration for Filter

 mpiFilterGainGet Get gain coefficients

 mpiFilterGainSet Set current gain index

 mpiFilterGainIndexGet Get current gain index

 mpiFilterGainIndexSet Set current gain index

Memory Methods
 mpiFilterMemory Get address to Filter memory

 mpiFilterMemoryGet Copy data from Filter memory to application memory

 mpiFilterMemorySet Copy data from application memory to Filter memory

Relational Methods
 mpiFilterAxisMapGet Get object map of axes associated with Filter

 mpiFilterAxisMapSet Set axes associated with Filter

 mpiFilterControl Return handle of Control that is assoiciated with Filter

file:///C|/htmlhelp/Software-MPI/docs/Filter/ftr_out.htm (1 of 2) [7/27/2005 12:00:15 PM]

file:///C|/htmlhelp/Software-MPI/docs/error_table.htm#filter

Filter Objects

 mpiFilterMotorMapGet Get object map of Motors associated with Filter

 mpiFilterMotorMapSet Set Motors to be associated with Filter

 mpiFilterNumber Get index of Filter (for Control list)

Action Methods
 mpiFilterIntergratorReset Reset the integrators of filter.

Postfilter Methods
 meiFilterPostfilterGet Reads postfilter information.

 meiFilterPostfilterSet Writes postfilter information.

 meiFilterPostfilterSectionGet Reads postfilter section information.

 meiFilterPostfilterSectionSet Writes postfilter section information.

Data Types

 MPIFilterCoeff

 MPIFilterConfig / MEIFilterConfig

 MEIFilterForm

 MPIFilterGain

 MEIFilterGainIndex

 MEIFilterGainPID

 MEIFilterGainPIDCoeff

 MEIFilterGainPIV

 MEIFilterGainPIVCoeff

 MEIFilterGainTypePID

 MEIFilterGainTypePIV

 MPIFilterMessage

 MEIFilterType

 MEIPostfilterSection

Constants

 MPIFilterCoeffCOUNT_MAX

 MPIFilterGainCOUNT_MAX

 MEIMaxBiQuadSections

file:///C|/htmlhelp/Software-MPI/docs/Filter/ftr_out.htm (2 of 2) [7/27/2005 12:00:15 PM]

mpiFilterCreate

mpiFilterCreate

Declaration

 MPIFilter mpiFilterCreate(MPIControl control,

 long number)

 Required Header: stdmpi.h

Description

mpiFilterCreate creates a Filter object associated with a filter (number), that is
located on a motion controller (control). FilterCreate is the equivalent of a C++
constructor.

Return Values

handle to an Filter object

MPIHandleVOID if the Filter object could not be created

See Also

mpiFilterDelete | mpiFilterValidate

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/create1.htm [7/27/2005 12:00:16 PM]

file:///C|/htmlhelp/Software-MPI/docs/Control/cnl_out.htm

mpiFilterDelete

mpiFilterDelete

Declaration

 long mpiFilterDelete(MPIFilter filter)

 Required Header: stdmpi.h

Description

mpiFilterDelete deletes a Filter object and invalidates its handle (filter). FilterDelete
is the equivalent of a C++ destructor.

Return Values

MPIMessageOK

See Also

mpiFilterCreate | mpiFilterValidate

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/delete1.htm [7/27/2005 12:00:16 PM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mpiFilterValidate

mpiFilterValidate

Declaration

 long mpiFilterValidate(MPIFilter filter)

 Required Header: stdmpi.h

Description

mpiFilterValidate validates the Filter object and its handle (filter).

Return Values

MPIMessageOK

See Also

mpiFilterCreate | mpiFilterDelete

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/valid1.htm [7/27/2005 12:00:16 PM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mpiFilterConfigGet

mpiFilterConfigGet

Declaration

 long mpiFilterConfigGet(MPIFilter filter,

 MPIFilterConfig *config,

 void *external)

 Required Header: stdmpi.h

Description

mpiFilterConfigGet gets a Filter's (filter) configuration and writes it into the structure
pointed to by config, and also writes it into the implementation-specific structure
pointed to by external (if external is not NULL).

The Filter's configuration information in external is in addition to the Filter's
configuration information in config, i.e, the Filter's configuration information in config
and in external is not the same information. Note that config or external can be
NULL (but not both NULL).

Remarks

external either points to a structure of type MEIFilterConfig{} or is NULL.

Return Values

MPIMessageOK

See Also

mpiFilterConfigSet | MEIFilterConfig

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/cfget1.htm [7/27/2005 12:00:17 PM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mpiFilterConfigSet

mpiFilterConfigSet

Declaration

 long mpiFilterConfigSet(MPIFilter filter,

 MPIFilterConfig *config,

 void *external)

 Required Header: stdmpi.h

Description

mpiFilterConfigGet sets a Filter's (filter) configuration using data from the structure
pointed to by config, and from the implementation-specific structure pointed to by
external (if external is not NULL).

The Filter's configuration information in external is in addition to the Filter's
configuration information in config, i.e, the Filter's configuration information in config
and in external is not the same information. Note that config or external can be
NULL (but not both NULL).

Remarks

external either points to a structure of type MEIFilterConfig{} or is NULL.

Return Values

MPIMessageOK

See Also

mpiFilterConfigGet | MEIFilterConfig

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/cfset1.htm [7/27/2005 12:00:17 PM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mpiFilterFlashConfigGet

mpiFilterFlashConfigGet

Declaration

 long mpiFilterFlashConfigGet(MPIFilter filter,

 void *flash,
 MPIFilterConfig *config,

 void *external)

 Required Header: stdmpi.h

Description

mpiFilterFlashConfigGet gets a Filter's (filter) flash configuration and writes it into
the structure pointed to by config, and also writes it into the implementation-specific
structure pointed to by external (if external is not NULL).

The Filter's flash configuration information in external is in addition to the Filter's flash
configuration information in config, i.e., the flash configuration information in config
and in external is not the same information. Note that config or external can be
NULL (but not both NULL).

Remarks

external either points to a structure of type MEIFilterConfig{} or is NULL.

Return Values

MPIMessageOK

See Also

MEIFlash | mpiFilterFlashConfigSet | MEIFilterConfig

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/flacfget1.htm [7/27/2005 12:00:18 PM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0
file:///C|/htmlhelp/Software-MPI/docs/Flash/fla_out.htm

mpiFilterFlashConfigSet

mpiFilterFlashConfigSet

Declaration

 long mpiFilterFlashConfigSet(MPIFilter filter,

 void *flash,
 MPIFilterConfig *config,

 void *external)

 Required Header: stdmpi.h

Description

mpiFilterFlashConfigSet sets a Filter's (filter) flash configuration using data from the
structure pointed to by config, and also using data from the implementation-specific
structure pointed to by external (if external is not NULL).

The Filter's flash configuration information in external is in addition to the Filter's flash
configuration information in config, i.e., the flash configuration information in config
and in external is not the same information. Note that config or external can be
NULL (but not both NULL).

Remarks

external either points to a structure of type MEIFilterConfig{} or is NULL.

Return Values

MPIMessageOK

See Also

MEIFlash | mpiFilterFlashConfigGet | MEIFilterConfig

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/flacfset1.htm [7/27/2005 12:00:18 PM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0
file:///C|/htmlhelp/Software-MPI/docs/Flash/fla_out.htm

mpiFilterGainGet

mpiFilterGainGet

Declaration

 long mpiFilterGainGet(MPIFilter filter,

 long gainIndex,
 MPIFilterGain *gain)

 Required Header: stdmpi.h

Description

mpiFilterGainGet gets the gain coefficients of a Filter (filter, for the gain index specified by
gainIndex) and writes them into the structure pointed to by gain.

Return Values

MPIMessageOK

Sample Code

/* Sets reasonable tuning parameters for a Trust TA9000 test stand */
void setPIDs(MPIFilter filter)
{
 MPIFilterGain gain;
 long returnValue;

 returnValue = mpiFilterGainGet(filter, 0, &gain);
 msgCHECK(returnValue);

 gain.coeff[MEIFilterGainPIDCoeffGAIN_PROPORTIONAL].f = (float)100;
 gain.coeff[MEIFilterGainPIDCoeffGAIN_INTEGRAL].f = (float)0.2;
 gain.coeff[MEIFilterGainPIDCoeffGAIN_DERIVATIVE].f = (float)1000;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_POSITION].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_VELOCITY].f = (float)45;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_ACCELERATION].f = (float)101000;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_FRICTION].f = (float)450;
 gain.coeff[MEIFilterGainPIDCoeffINTEGRATIONMAX_MOVING].f = (float)15000;
 gain.coeff[MEIFilterGainPIDCoeffINTEGRATIONMAX_REST].f = (float)15000;
 gain.coeff[MEIFilterGainPIDCoeffDRATE].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_LIMIT].f = (float)32767;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_LIMITHIGH].f = (float)32767;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_LIMITLOW].f = (float)-32767;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_OFFSET].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffNOISE_POSITIONFFT].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffNOISE_FILTERFFT].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffNOISE_VELOCITYFFT].f = (float)0;

 returnValue = mpiFilterGainSet(filter, 0, &gain);
 msgCHECK(returnValue);

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/gnget1.htm (1 of 2) [7/27/2005 12:00:18 PM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mpiFilterGainGet

}

Another way to change filter coefficients is to use mpiFilterConfigGet /Set.

 returnValue = mpiFilterConfigGet(filter, &config, NULL);
 msgCHECK(returnValue);

 /*
 Look in MEIFilterGainPIDCoeff to get the indexes.
 Not all of the above coefficients are shown in this short example.
 */

 config.gain[0].coeff[MEIFilterGainPIDCoeffGAIN_PROPORTIONAL].f = (float)100;
 config.gain[0].coeff[MEIFilterGainPIDCoeffGAIN_INTEGRAL].f = (float)0.2;
 config.gain[0].coeff[MEIFilterGainPIDCoeffGAIN_DERIVATIVE].f = (float)1000;

 returnValue = mpiFilterConfigSet(filter, &config, NULL);
 msgCHECK(returnValue);

See Also

mpiFilterGainSet | mpiFilterConfigGet | mpiFilterConfigSet

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/gnget1.htm (2 of 2) [7/27/2005 12:00:18 PM]

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/gnset1.htm

mpiFilterGainSet

Declaration

 long mpiFilterGainSet(MPIFilter filter,

 long gainIndex,
 MPIFilterGain *gain)

 Required Header: stdmpi.h

Description

mpiFilterGainSet sets the gain coefficients of a Filter (filter, for the gain index specified by
gainIndex) using data from the structure pointed to by gain.

Return Values

MPIMessageOK

Sample Code

/* Sets reasonable tuning parameters for a Trust TA9000 test stand */
void setPIDs(MPIFilter filter)
{
 MPIFilterGain gain;
 long returnValue;

 returnValue = mpiFilterGainGet(filter, 0, &gain);
 msgCHECK(returnValue);

 gain.coeff[MEIFilterGainPIDCoeffGAIN_PROPORTIONAL].f = (float)100;
 gain.coeff[MEIFilterGainPIDCoeffGAIN_INTEGRAL].f = (float)0.2;
 gain.coeff[MEIFilterGainPIDCoeffGAIN_DERIVATIVE].f = (float)1000;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_POSITION].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_VELOCITY].f = (float)45;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_ACCELERATION].f = (float)101000;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_FRICTION].f = (float)450;
 gain.coeff[MEIFilterGainPIDCoeffINTEGRATIONMAX_MOVING].f = (float)15000;
 gain.coeff[MEIFilterGainPIDCoeffINTEGRATIONMAX_REST].f = (float)15000;
 gain.coeff[MEIFilterGainPIDCoeffDRATE].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_LIMIT].f = (float)32767;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_LIMITHIGH].f = (float)32767;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_LIMITLOW].f = (float)-32767;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_OFFSET].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffNOISE_POSITIONFFT].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffNOISE_FILTERFFT].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffNOISE_VELOCITYFFT].f = (float)0;

 returnValue = mpiFilterGainSet(filter, 0, &gain);
 msgCHECK(returnValue);

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/gnset1.htm (1 of 2) [7/27/2005 12:00:19 PM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/gnset1.htm

}

Another way to change filter coefficients is to use mpiFilterConfigGet /Set.

 returnValue = mpiFilterConfigGet(filter, &config, NULL);
 msgCHECK(returnValue);

 /*
 Look in MEIFilterGainPIDCoeff to get the indexes.
 Not all of the above coefficients are shown in this short example.
 */

 config.gain[0].coeff[MEIFilterGainPIDCoeffGAIN_PROPORTIONAL].f = (float)100;
 config.gain[0].coeff[MEIFilterGainPIDCoeffGAIN_INTEGRAL].f = (float)0.2;
 config.gain[0].coeff[MEIFilterGainPIDCoeffGAIN_DERIVATIVE].f = (float)1000;

 returnValue = mpiFilterConfigSet(filter, &config, NULL);
 msgCHECK(returnValue);

See Also

mpiFilterGainGet | mpiFilterConfigGet | mpiFilterConfigSet

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/gnset1.htm (2 of 2) [7/27/2005 12:00:19 PM]

mpiFilterGainIndexGet

mpiFilterGainIndexGet

Declaration

 long mpiFilterGainIndexGet(MPIFilter filter,

 long *gainIndex)

 Required Header: stdmpi.h

Description

mpiFilterGainIndexGet gets the current gain index of a Filter (filter) and writes it to
the location pointed to by gainIndex. Reading the gain index tells you what gain table
is being used currently.

If the filter is in state MEIXmpSwitchType MEIXmpSwitchTypeMOTION_ONLY, the
gain index is automatically changed by the firmware as described at
MEIXmpSwitchType. When the filter is in state MEIXmpSwitchType
MEIXmpSwitchTypeNONE, the gain index is controlled by the user.

Gain Scheduling is a feature that switches filter gains for the acceleration,
deceleration, constant velocity, and idle states of motion. The post filters are not
affected by gain scheduling. Standard algorithms are used with gain scheduling (PID,
PIV).

Return Values

MPIMessageOK

See Also

MPIFilterConfig | mpiFilterConfigGet | mpiFilterConfigSet | MEIFilterGainIndex |
MEIXmpSwitchType | mpiFilterGainIndexSet | mpiFilterGainGet | mpiFilterGainSet

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/gninxget1.htm [7/27/2005 12:00:19 PM]

file:///C|/htmlhelp/Software-MPI/docs/Xmp/DataType/switchty2.htm
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0
file:///C|/htmlhelp/Software-MPI/docs/Xmp/DataType/switchty2.htm

mpiFilterGainIndexSet

mpiFilterGainIndexSet

Declaration

 long mpiFilterGainIndexSet(MPIFilter filter,

 long gainIndex)

 Required Header: stdmpi.h

Description

mpiFilterGainIndexSet sets the current gain index of a Filter (filter) to gainIndex.
Writing the gain index controls what gain table is currently being used.

If the filter is in state MEIXmpSwitchType MEIXmpSwitchTypeMOTION_ONLY, the
gain index is changed automatically by the firmware as described at
MEIXmpSwitchType. Be aware that the filter can change the gain index in real-time,
thereby overwriting your changes in this mode.

When the filter is in state MEIXmpSwitchType MEIXmpSwitchTypeNONE, the gain
index is controlled by the user. This is the normal state when using
FilterGainIndexSet(...). Gain Scheduling is a feature that switches filter gains for the
acceleration, deceleration, constant velocity, and idle states of motion. The post filters
are not affected by gain scheduling. Standard algorithms are used with gain
scheduling (PID, PIV).

Return Values

MPIMessageOK

See Also

MPIFilterConfig | mpiFilterConfigGet | mpiFilterConfigSet | MEIFilterGainIndex |
MEIXmpSwitchType | mpiFilterGainIndexGet | mpiFilterGainGet | mpiFilterGainSet

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/gninxset1.htm [7/27/2005 12:00:19 PM]

file:///C|/htmlhelp/Software-MPI/docs/Xmp/DataType/switchty2.htm
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0
file:///C|/htmlhelp/Software-MPI/docs/Xmp/DataType/switchty2.htm

mpiFilterMemory

mpiFilterMemory

Declaration

 long mpiFilterMemory(MPIFilter filter,

 void **memory)

 Required Header: stdmpi.h

Description

mpiFilterMemory writes an address, which is used to access a Filter's (filter)
memory to the contents of memory. This address, or an address calculated from it,
can be passed as the src parameter to MPIFilterMemoryGet(...) and as the dst
parameter to MPIFilterMemorySet(...).

Return Values

MPIMessageOK

See Also

mpiFilterMemoryGet | mpiFilterMemorySet

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/mem1.htm [7/27/2005 12:00:20 PM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mpiFilterMemoryGet

mpiFilterMemoryGet

Declaration

 long mpiFilterMemoryGet(MPIFilter filter,

 void *dst,
 const void *src,
 long count)

 Required Header: stdmpi.h
Change History: Modified in the 03.03.00

Description

mpiFilterMemoryGet copies count bytes of a Filter's (filter) memory (starting at
address src) and writes them into application memory (starting at address dst).

Return Values

MPIMessageOK

See Also

mpiFilterMemorySet | mpiFilterMemory

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/memget1.htm [7/27/2005 12:00:20 PM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mpiFilterMemorySet

mpiFilterMemorySet

Declaration

 long mpiFilterMemorySet(MPIFilter filter,

 void *dst,
 const void *src,
 long count)

 Required Header: stdmpi.h
Change History: Modified in the 03.03.00

Description

mpiFilterMemorySet copies count bytes of application memory (starting at address
src) and writes them into a Filter's (filter) memory (starting at address dst).

Return Values

MPIMessageOK

See Also

mpiFilterMemorySet | mpiFilterMemory

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/memset1.htm [7/27/2005 12:00:20 PM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mpiFilterAxisMapGet

mpiFilterAxisMapGet

Declaration

 long mpiFilterAxisMapGet(MPIFilter filter,

 MPIObjectMap *axisMap)

 Required Header: stdmpi.h

Description

mpiFilterAxisMapGet gets the object map of the Axes that are associated with a
Filter (filter), and writes it into the structure pointed to by axisMap.

Return Values

MPIMessageOK

See Also

mpiFilterAxisMapSet

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/axmapget1.htm [7/27/2005 12:00:20 PM]

file:///C|/htmlhelp/Software-MPI/docs/Object/DataType/map1.htm
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mpiFilterAxisMapSet

mpiFilterAxisMapSet

Declaration

 long mpiFilterAxisMapSet(MPIFilter filter,

 MPIObjectMap axisMap)

 Required Header: stdmpi.h

Description

mpiFilterAxisMapSet sets the Axes associated with a Filter (filter), using data from
the object map specified by axisMap.

Return Values

MPIMessageOK

See Also

mpiFilterAxisMapGet

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/axmapset1.htm [7/27/2005 12:00:20 PM]

file:///C|/htmlhelp/Software-MPI/docs/Object/DataType/map1.htm
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mpiFilterControl

mpiFilterControl

Declaration

 MPIControl mpiFilterControl(MPIFilter filter)

 Required Header: stdmpi.h

Description

mpiFilterControl returns a handle to the motion controller (Control object) associated
with the specified Filter object (filter).

Return Values

handle to a Control object that a Filter object is associated with

MPIHandleVOID if the Filter object is invalid

See Also

mpiFilterConfigGet | MEIFilterConfig

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/cnl1.htm [7/27/2005 12:00:21 PM]

file:///C|/htmlhelp/Software-MPI/docs/Control/cnl_out.htm

mpiFilterMotorMapGet

mpiFilterMotorMapGet

Declaration

 long mpiFilterMotorMapGet(MPIFilter filter,

 MPIObjectMap *motorMap)

 Required Header: stdmpi.h

Description

mpiFilterMotorMapGet gets the object map of the Motors associated with the Filter
(filter), and writes it into the structure pointed to by motorMap.

Return Values

MPIMessageOK

See Also

mpiFilterMotorMapSet

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/mtrmapget1.htm [7/27/2005 12:00:21 PM]

file:///C|/htmlhelp/Software-MPI/docs/Object/DataType/map1.htm
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mpiFilterMotorMapSet

mpiFilterMotorMapSet

Declaration

 long mpiFilterMotorMapSet(MPIFilter filter,

 MPIObjectMap motorMap)

 Required Header: stdmpi.h

Description

mpiFilterMotorMapSet sets the Motors associated with the Filter (filter) using data
from the object map specified by motorMap.

Return Values

MPIMessageOK

See Also

mpiFilterMotorMapGet

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/mtrmapset1.htm [7/27/2005 12:00:21 PM]

file:///C|/htmlhelp/Software-MPI/docs/Object/DataType/map1.htm
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mpiFilterNumber

mpiFilterNumber

Declaration

 long mpiFilterNumber(MPIFilter filter,

 long *number)

 Required Header: stdmpi.h

Description

For a motion controller that filter is associated with, mpiFilterNumber writes the
index of filter to the contents of number.

Return Values

MPIMessageOK

See Also

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/num1.htm [7/27/2005 12:00:21 PM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mpiFilterIntergratorReset

mpiFilterIntergratorReset

Declaration

 long mpiFilterIntegratorReset(MPIFilter filter)

 Required Header: stdmpi.h

Description

mpiFilterIntergratorReset resets the integrators of filter.

Return Values

MPIMessageOK

MPIFilterMessageINVALID_ALGORITHM

Sample Code

/* Enable the amplifier for every motor attached to a motion supervisor */
void motionAmpEnable(MPIMotion motion)
{
 MPIControl control;
 MPIAxis axis;
 MPIMotor motor;
 MPIFilter filter;
 MPIObjectMap map;
 MPIObjectMap motionMotorMap;
 long motorIndex;
 long filterIndex;
 long returnValue;
 double position;
 long enableState;

 /* Get the controller handle */
 control = mpiMotionControl(motion);

 for (axis = mpiMotionAxisFirst(motion);
 axis != MPIHandleVOID;
 axis = mpiMotionAxisNext(motion, axis)) {

 /* Get the object map for the motors */
 returnValue = mpiAxisMotorMapGet(axis, &map);
 msgCHECK(returnValue);

 /* Add map to motionMotorMap */
 motionMotorMap |= map;
 }

 /* For every motor ... */
 for (motorIndex = 0; motorIndex < MEIXmpMAX_Motors; motorIndex++) {

 if (mpiObjectMapBitGET(motionMotorMap, motorIndex)) {

 /* Create motor handle */
 motor = mpiMotorCreate(control, motorIndex);
 msgCHECK(mpiMotorValidate(motor));

 /* Get the state of the amplifier */

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/igtrrst1.htm (1 of 3) [7/27/2005 12:00:22 PM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#2306

mpiFilterIntergratorReset

 returnValue = mpiMotorAmpEnableGet(motor, &enableState);
 msgCHECK(returnValue);

 /* If the amplifier is disabled ... */
 if (enableState == FALSE) {

 /* For every axis */
 for (axis = mpiMotionAxisFirst(motion);
 axis != MPIHandleVOID;
 axis = mpiMotionAxisNext(motion, axis)) {

 /* Get the object map for the motors */
 returnValue = mpiAxisMotorMapGet(axis, &map);
 msgCHECK(returnValue);

 /* If axis is attached to motor ... */
 if (mpiObjectMapBitGET(map, motorIndex)) {

 /* Get the actual position of the axis */
 returnValue = mpiAxisActualPositionGet(axis,
&position);
 msgCHECK(returnValue);

 /* Set command position equal to actual position */
 returnValue = mpiAxisCommandPositionSet(axis,
position);
 msgCHECK(returnValue);
 }
 }

 /* Get the object map for the filters */
 returnValue = mpiMotorFilterMapGet(motor, &map);
 msgCHECK(returnValue);

 /* For every filter ... */
 for (filterIndex = 0;
 filterIndex < MEIXmpMAX_Filters;
 filterIndex++) {

 if (mpiObjectMapBitGET(map, filterIndex)) {

 /* Create filter handle */
 filter = mpiFilterCreate(control, filterIndex);
 msgCHECK(mpiFilterValidate(filter));

 /* Reset integrator */
 returnValue = mpiFilterIntegratorReset(filter);
 msgCHECK(returnValue);

 /* Delete filter handle */
 returnValue = mpiFilterDelete(filter);
 msgCHECK(returnValue);
 }
 }

 /* Enable the amplifier */
 returnValue = mpiMotorAmpEnableSet(motor, TRUE);
 msgCHECK(returnValue);
 }

 /* Delete motor handle */
 returnValue = mpiMotorDelete(motor);
 msgCHECK(returnValue);
 }
 }
}

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/igtrrst1.htm (2 of 3) [7/27/2005 12:00:22 PM]

mpiFilterIntergratorReset

Troubleshooting

If an axis is not in an error state and the filter associated with that axis' motor has a non-zero
integration term, then it is very likely that the integrator has built up a substantial integral term.
Enabling the motor's amplifier when this has happened could cause the motor to jump with enormous
force. Use mpiFilterIntegratorReset to reset the integrator before enabling the motor's amplifier to
prevent this kind of jump.

Another condition that can cause the motor to jump upon enabling its amplifier is that the command
position of the axis is not equal to the actual position of the axis. To prevent this situation, one should
use mpiAxisActualPositionGet and mpiAxisCommandPositionSet. Please refer to this functions
for a more in depth discussion.

See Also

MPIFilter | MEIFilterConfig | MEIFilterGainPID | MEIFilterGainPIV
mpiAxisActualPositionGet | mpiAxisCommandPositionSet

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/igtrrst1.htm (3 of 3) [7/27/2005 12:00:22 PM]

file:///C|/htmlhelp/Software-MPI/docs/Axis/Method/aclposget1.htm
file:///C|/htmlhelp/Software-MPI/docs/Axis/Method/aclposset1.htm

meiFilterPostfilterGet

mpiFilterPosfilterGet

Declaration

 long meiFilterPostfilterGet(MPIFilter filter,

 long *sectionCount,
 MEIPostfilterSection *sections);

 Required Header: stdmei.h

Description

meiFilterPostfilterGet reads an MPIFilter object's postfilter configuration. It writes to
sectionCount the number of sections within a postfilter if sectionCount is not NULL. It also
writes to sections the current array of filter's postfilter sections if sections is not NULL.

The MPI calculates the post filter coefficients and takes into consideration the sample rate of the
controller at that time. If you change the sample rate of the controller, you will need to
recalculate the post filters. This can be done for all filters specified in Hertz by setting the filters
again with the MPI. The MPI will calculate the filters using the current servo sample rate.

Postfilters are used to digitally filter the output of a control loop. One common use for postfilters
is the compensation of system resonances.

filter the handle of the MPIFilter object whose postfilter configuration is to be read.

*sectionCount the data location where the postfilter's current section count will be written.

*sections the data location where the postfilter's current section configuration data will be written.

Return Values

MPIMessageOK

MPIFilterMessageCONVERSION_DIV_BY_0

MPIFilterMessageINVALID_FILTER_FORM

Sample Code

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/postftrget2.htm (1 of 2) [7/27/2005 12:00:23 PM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#divby0
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#form

meiFilterPostfilterGet

/* Count the number of resonator sections in a MPIFilter object's postfilter.
 Sample usage:

 returnValue =
 filterResonatorCount(filter, &resonatorCount);
*/

long filterResonatorCount(MPIFilter filter, long* count)
{
 MPIFilterConfig config;
 MEIPostfilterSection sections[MEIMaxBiQuadSections];
 long sectionCount, index;
 long returnValue = (count==NULL) ? MPIMessageARG_INVALID : MPIMessageOK;

 if (returnValue == MPIMessageOK)
 {
 returnValue =
 meiFilterPostfilterGet(filter, §ionCount, sections);

 if (returnValue == MPIMessageOK)
 {
 for (*count=0, index=0; index sectionCount; ++index)
 {
 if (section[index].type == MEIFilterTypeRESONATOR) ++(*count);
 }
 }
 }
 return returnValue;
}

See Also

MEIPostfilterSection | meiFilterPostfilterGet | meiFilterPostfilterSet | meFilterPostfilterSectionGet
| MEIMaxBiQuadSections | Post Filter Theory

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/postftrget2.htm (2 of 2) [7/27/2005 12:00:23 PM]

file:///C|/htmlhelp/Software-MPI/docs/Global/DataType/maxbiquadsect2.htm

meiFilterPostfilterSet

meiFilterPosfilterSet

Declaration

 long meiFilterPostfilterSet(MPIFilter filter,

 long *sectionsCount,
 MEIPostfilterSection *sections);

 Required Header: stdmei.h

Description

meiFilterPostfilterSet sets the number of postfilter sections within an MPIFilter object
and configures each postfilter section as well. If numberOfSections equals zero,
then sections can be NULL and the postfilter will be disabled.

The MPI calculates the post filter coefficients and takes into consideration the sample
rate of the controller at that time. If you change the sample rate of the controller, you
will need to recalculate the post filters. This can be done for all filters specified in
Hertz by setting the filters again with the MPI. The MPI will calculate the filters using
the current servo sample rate.

Postfilters are used to digitally filter the output of a control loop. One common use for
postfilters is the compensation of system resonances.

filter the handle of the MPIFilter object whose postfilter sections will be
configured.

*sectionsCount the number of postfilter sections to set in the filter object.

*sections a pointer to an array of MEIPostfilterSection data structures to be set in filter.

Return Values

MPIMessageOK

Sample Code

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/postftrset2.htm (1 of 2) [7/27/2005 12:00:24 PM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

meiFilterPostfilterSet

/* Set a 4th order low-pass post-filter by using
 two 2nd order low-pass sections.
 Sample usage:

 returnValue =
 fourthOrderLowPass(filter, 300 /* Hz */);
*/
long filterFouthOrderLowpass(MPIFilter filter, long breakPointFrequency)
{
 MPIFilterConfig config;
 MEIPostfilterSection section[MEIMaxBiQuadSections];
 long returnValue;

 section[0].type = MEIFilterTypeLOW_PASS;
 section[0].form = MEIFilterFormINT_BIQUAD;
 section[0].data.lowPass.breakpoint = breakPointFrequency;
 section[1] = section[0]; /* copy first section */

 returnValue =
 meiFilterPostfilterSet(filter, 2, section);

 return returnValue;
}

See Also

MEIPostfilterSection | meiFilterPostfilterGet | meFilterPostfilterSectionSet |
MEIMaxBiQuadSections | Post Filter Theory

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/postftrset2.htm (2 of 2) [7/27/2005 12:00:24 PM]

file:///C|/htmlhelp/Software-MPI/docs/Global/DataType/maxbiquadsect2.htm

meiFilterPostfilterSectionGet

meiFilterPosfilterSectionGet

Declaration

 long meiFilterPostfilterSectionGet(MPIFilter filter,

 long sectionNumber,
 MEIPostfilterSection *section);

 Required Header: stdmei.h

Description

meiFilterPostfilterSectionGet reads the configuration of a single section of an MPIFilter
object's postfilter. It writes to *section the configuration of filter's postfilter sectionNumberth
section.

The MPI calculates the post filter coefficients and takes into consideration the sample rate of
the controller at that time. If you change the sample rate of the controller, you will need to
recalculate the post filters. This can be done for all filters specified in Hertz by setting the
filters again with the MPI. The MPI will calculate the filters using the current servo sample
rate.

Postfilters are used to digitally filter the output of a control loop. One common use for
postfilters is the compensation of system resonances.

filter the handle of the MPIFilter object whose postfilter section configuration is to be
read.

sectionNumber the index of the postfilter section whose configuration is to be read.

section the data location where the postfilter's current section configuration data will be
written.

Return Values

MPIMessageOK

MPIFilterMessageCONVERSION_DIV_BY_0

MPIFilterMessageSECTION_NOT_ENABLED

MPIFilterMessageINVALID_FILTER_FORM

Sample Code

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/postftrsectget2.htm (1 of 2) [7/27/2005 12:00:24 PM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#divby0
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#enabled
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#form

meiFilterPostfilterSectionGet

/* Test a section of a MPIFilter object's postfilter to
 see if it is a notch type.
 Sample usage:

 returnValue =
 isSectionTypeNotch(filter, 0, &isNotch);
*/
long isSectionTypeNotch(MPIFilter filter, long sectionIndex, long* isNotch)
{
 MPIFilterConfig config;
 MEIPostfilterSection section;
 long returnValue = (isNotch==NULL) ? MPIMessageARG_INVALID : MPIMessageOK;

 if (returnValue == MPIMessageOK)
 {
 returnValue =
 meiFilterPostfilterSectionGet(filter, sectionIndex, §ion);
 if (returnValue == MPIMessageOK)
 {
 *isNotch = (section.type == MEIFilterTypeNOTCH) ? TRUE : FALSE;
 }
 }

 return returnValue;
}

See Also

MEIPostfilterSection | meiFilterPostfilterGet | meFilterPostfilterSectionSet |
MEIMaxBiQuadSections | Post Filter Theory

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/postftrsectget2.htm (2 of 2) [7/27/2005 12:00:24 PM]

file:///C|/htmlhelp/Software-MPI/docs/Global/DataType/maxbiquadsect2.htm

meiFilterPostfilterSectionSet

meiFilterPosfilterSectionSet

Declaration

 long meiFilterPostfilterSectionSet(MPIFilter filter,

 long sectionNumber,
 MEIPostfilterSection *section);

 Required Header: stdmei.h

Description

meiFilterPostfilterSectionSet sets the configuration of a single section of an
MPIFilter object's postfilter. It sets filter's postfilter sectionNumberth section to the
configuration specified in *section. If the postfilter type is IIR, then this method is
essentially equivalent to meiFilterPostfilterSet().

The MPI calculates the post filter coefficients taking into consideration the sample rate
of the controller at that time. If you change the change the sample rate of the
controller, you will need to recalculate your post filters. This can be done for all filters
specified in Hertz by setting the filters again using the MPI. The MPI will calculate the
filters using the current servo sample rate.

Postfilters are used to digitally filter the output of a control loop. One common use for
postfilters is the compensation of system resonances.

filter the handle of the MPIFilter object whose postfilter section configuration is to
be set.

sectionNumber the index of the postfilter section whose configuration is to be set.

*section the data location of the section configuration to copy to the controller.

Return Values

MPIMessageOK

Sample Code

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/postftrsectset2.htm (1 of 2) [7/27/2005 12:00:26 PM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

meiFilterPostfilterSectionSet

/* Set a section of a MPIFilter object's postfilter
 to a unity gain filter type.
 Sample usage:

 returnValue =
 setSectionTypeUnityGain(filter, 3);
*/
long setSectionTypeUnityGain(MPIFilter filter, long sectionIndex)
{
 MPIFilterConfig config;
 MEIPostfilterSection section;
 long returnValue;

 section.type = MEIFilterTypeUNITY_GAIN;
 section.form = MEIFilterFormBIQUAD;

 returnValue =
 meiFilterPostfilterSectionSet(filter, sectionIndex, §ion);

 return returnValue;
}

See Also

MEIPostfilterSection | meiFilterPostfilterSet | meFilterPostfilterSectionGet |
MEIMaxBiQuadSections | Post Filter Theory

file:///C|/htmlhelp/Software-MPI/docs/Filter/Method/postftrsectset2.htm (2 of 2) [7/27/2005 12:00:26 PM]

file:///C|/htmlhelp/Software-MPI/docs/Global/DataType/maxbiquadsect2.htm

MPIFilterConfig / MEIFilterConfig

MPIFilterConfig / MEIFilterConfig

Definition: MPIFilterConfig

typedef struct MPIFilterConfig {
 long gainIndex;
 MPIFilterGain gain[MPIFilterGainCOUNT_MAX];

 MPIObjectMap axisMap;

 MPIObjectMap motorMap;

} MPIFilterConfig;

Description

gainIndex Gain table index. Gain tables number 0 to MPIFilterGainCOUNT_MAX -1
(MPIFilterGainCOUNT_MAX = 5).

gain See MPIObjectMap

axisMap See MPIObjectMap

motorMap See MPIObjectMap

Definition: MEIFilterConfig

typedef struct MEIFilterConfig {
 char userLabel[MEIObjectLabelCharMAX+1];

 /* +1 for NULL terminator */
 MEIXmpAlgorithm Algorithm;

 MEIXmpAxisInput Axis[MEIXmpFilterAxisInputs];

 long *VelPositionPtr;

 MEIXmpSwitchType GainSwitchType;

 float GainDelay;
 long GainWindow;
 MEIXmpSwitchType PPISwitchType;

 MEIXmpPPIMode PPIMode;
 float PPIDelay;
 long PPIWindow;
 MEIXmpIntResetConfig ResetIntegratorConfig;
 float ResetIntegratorDelay;

 MEIXmpFilterForm PostFilterForm;
 MEIXmpPostFilter PostFilter;
} MEIFilterConfig;

 Change History: Modified in the 03.03.00.

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/cf3.htm (1 of 4) [7/27/2005 12:00:17 PM]

file:///C|/htmlhelp/Software-MPI/docs/Object/DataType/map1.htm
file:///C|/htmlhelp/Software-MPI/docs/Object/DataType/map1.htm
file:///C|/htmlhelp/Software-MPI/docs/Object/DataType/map1.htm
file:///C|/htmlhelp/Software-MPI/docs/Object/DataType/map1.htm
file:///C|/htmlhelp/Software-MPI/docs/Object/DataType/map1.htm
file:///C|/htmlhelp/Software-MPI/docs/Object/DataType/lblcharmax5.htm
file:///C|/htmlhelp/Software-MPI/docs/Xmp/DataType/switchty2.htm
file:///C|/htmlhelp/Software-MPI/docs/Xmp/DataType/switchty2.htm

MPIFilterConfig / MEIFilterConfig

Description

MEIFilterConfig contains configuration information specific to a controller. With the exception of
the Algorithm element, MEIFilterConfig contains configuration information that are more intuitively
accessed by other means (Postfilter parameter) or information for advanced setups and custom
controller firmware.

userLabel This value consists of 16 characters and is used to label the filter object for user
identification purposes. The userLabel field is NOT used by the controller.

Algorithm This value defines the algorithm that the filter is executing every servo cycle. The
most common values are:

MEIXmpAlgorithmPID PID algorithm
MEIXmpAlgorithmPIV PIV algorithm
MEIXmpAlgorithmNONE No control algorithm

Axis
[MEIXmpFilterAxisInputs]

This array defines the axis (pointer to the axis) and coefficient for the position input
into the filter. The input to the filter is the position error of the axis, which is
multiplied by the coefficient defined by the Axis array.

VelPositionPtr Velocity position pointer to an encoder input for algorithms that require a velocity
encoder position input (such as the PIV algorithm).

AuxInput
[MEIXmpFilterAuxInputs]

This array is a place holder for additional filter inputs from analog sources.
This is currently not supported and is reserved for future use.

GainSwitchType Value to define the gain table switch type.
Not implemented in standard firmware.

GainDelay Custom Delay
Not implemented in standard firmware.

GainWindow Custom Delay
Not implemented in standard firmware.

PPISwitchType Value to define the gain switch type for PPI mode.
Not implemented in standard firmware.

PPIMode Value to define the PPI switch mode.
Not implemented in standard firmware.

PPIDelay Custom Delay
Not implemented in standard firmware.

PPIWindow Custom Window
Not implemented in standard firmware.

ResetIntegratorConfig Value to define the integrator's reset configuration.
Not supported in standard firmware.

ResetIntegratorDelay Value to define the integrator's reset delay.
Not supported in standard firmware.

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/cf3.htm (2 of 4) [7/27/2005 12:00:17 PM]

MPIFilterConfig / MEIFilterConfig

PostFilterForm This value defines the form for postfilters when they are configured using
mpiFilterConfigGet/Set().

Supported values are:

● MEIXmpFilterFormIIR,
IIR Filter

● MEIXmpFilterFormBIQ,
Bi-Quad Filter

● MEIXmpFilterFormSS_BIQ,
State Space form of Bi-Quad Filter

● MEIXmpFilterFormINT_BIQ,
Integer (64-bit) Bi-Quad Filter

● MEIXmpFilterFormINT_SS_BIQ,
Integer State Space form of Bi-Quad Filter

Though the postfilter may be configured through this parameter, it is strongly
recommended that users use the meiFilterPostfilter.() methods instead for a more
intuitive and user-friendly interface.

PostFilter This array defines the configuration for the filter's postfilter (the type, the length and
values for the post filter coefficients). Though the postfilter may be configured
though this parameter, it is strongly recommended that users use the
meiFilterPostfilter.() methods instead for a more intuitive interface.

Postfilters are used to digitally filter the output of a control loop. One common use
for postfilters is the compensation of system resonances.

Sample Code

/* Test whether an MPIFilter object's control loop algorithm is PID.
 Sample usage:

 returnValue =
 isAlgorithmPid(filter, &isPid);
*/

long isAlgorithmPid(MPIFilter filter, long* isPid)
{
 MEIFilterConfig xmpConfig;
 long returnValue = (isPid==NULL) ? MPIMessageARG_INVALID : MPIMessageOK;

 if (returnValue == MPIMessageOK)
 {
 returnValue =
 mpiFilterConfigGet(filter, NULL, &xmpConfig);
 if (returnValue == MPIMessageOK)
 {
 *isPid = (xmpConfig.Algorithm == MEIXmpAlgorithmPID) ? TRUE : FALSE;
 }

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/cf3.htm (3 of 4) [7/27/2005 12:00:17 PM]

MPIFilterConfig / MEIFilterConfig

 }

 return returnValue;
}

See Also

mpiFilterConfigGet | mpiFilterConfigSet | meiFilterPostfilterGet |
meiFilterPostfilterSet | meiFilterPostfilterSectionGet | meiFilterPostfilterSectionSet

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/cf3.htm (4 of 4) [7/27/2005 12:00:17 PM]

MPIFilterCoeff

MPIFilterCoeff

Definition

 typedef union {
 float f;
 long l;
} MPIFilterCoeff;

Description

MPIEventStatus holds information about a particular event that was generated by the
XMP.

f float coefficient

l long coefficient

See Also

MPIFilterCoeffCOUNT_MAX | MEIFilterGainPIDCoeff | MEIFilterGainPIVCoeff

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/coef1.htm [7/27/2005 12:00:26 PM]

MEIFilterForm

MEIFilterForm

Definition

 typedef enum{
 MEIFilterFormIIR,
 MEIFilterFormBIQUAD,
 MEIFilterFormSS_BIQUAD,
 MEIFilterFormINT_BIQUAD,
 MEIFilterFormINT_SS_BIQUAD,
} MEIFilterForm;

Description

MEIFilterForm describes the form that a digital filter takes on the controller. Please
note that the equations listed below use the coefficients loaded onto the controller, not
necessarily the coefficients used by the MPI. A user may specify a low pass filter with
only a single parameter (the breakpoint) and request that the form of the filter be a
space-state biquad form on the controller.

Digital filtering on the XMP is accomplished through 32-bit words. This equates to the
use of single precision floating point numbers - a 24-bit mantissa or about 7 decimal
places of accuracy. This lack of precision can cause errors in the filtering process
normally appearing as DC gain shifts or limit cycling, this especially true when the
filter requires more than one section, a 6th order low pass filter would be one
example. Filter forms using integer math can provide more internal precision for
coefficients and internal registers but at the cost of less dynamic range. Filter forms
using integer math take more processing time for the controller and can potentially
limit the maximum sample rate of the controller.

The state-space (SS) filter forms allow the scaling of the input and the output,
whereas the non-state-space forms only allow output scaling. This helps to prevent
the loss of precision of the internal registers while still maintaining a very large
dynamic range. Filter forms using state-space forms take more processing time for
the controller and can potentially limit the maximum sample rate of the controller.
However, a non-integer state-space filter form takes less processing power than an
integer non-state-space filter form.

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/form2.htm (1 of 3) [7/27/2005 12:00:27 PM]

MEIFilterForm

MEIFilterFormIIR Deprecated. Cascaded biquad sections offer better precision
and better calculation performance.

MEIFilterFormBIQUAD Second Order digital filter form, for implementing low/high
pass, notch, lead/lag and custom filters. The filter is a single
precision floating point canonical form. The biquad filter is
defined by the following discrete transfer function:

The XMP's representation of this filter is:

w0: Intermediate result
u(k): filter input
a1, a2, b0, b1, and b2: discrete biquad coefficients
y(k):filter output
x1k and x2k: filter states

MEIFilterFormSS_BIQUAD Second order digital filter form, for implementing low/high
pass, notch, lead/lag and custom filters. The filter is a single
precision, floating point state space implementation. This
filter applies input and output scaling to the canonical form.
The XMP's state space representation of this filter is:

u(k): filter input
d1, c1, c2, a2, a1,b1: discrete biquad coefficients
y(k):filter output
p1k and p2k: filter states

MEIFilterFormINT_BIQUAD Second Order digital filter form, for implementing low/high
pass, notch, lead/lag and custom filters. The filter is a fixed
point canonical form state space implementation. This form
is a fixed point implementation of the floating point form
MEIFilterFormBIQUAD. See the definition of
MEIFilterFormBIQUAD above for the defining equations
for this filter.

The input coefficients for this filter (b0, b1, b2, a1 and a2)
should all be greater than -2, and less than 2. The
coefficients are represented as 32 bit 2's complement, with
1=2^30. The coefficient's numerical format is 1.29 (1 bit
whole, 29 bits fractional), and the controller uses an 80 bit
accumulator. Only the 32 bit result of the multiplication is
output from each section.

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/form2.htm (2 of 3) [7/27/2005 12:00:27 PM]

MEIFilterForm

MEIFilterFormINT_SS_BIQUAD Second Order digital filter form, for implementing low/high
pass, notch, lead/lag and custom filters. The filter is a fixed
point canonical form state space implementation. This form
is a fixed point implementation of the floating point form
MEIFilterFormSS_BIQUAD. See the definition of
MEIFilterFormSS_BIQUAD above for the defining
equations for this filter.

The input coefficients for this filter (d1, c1, c2, a2, a1 and
b1) should all be greater than -2, and less than 2. The
coefficients are represented as 32 bit 2's complement, with
1=2^30. The coefficient's numerical format is 1.29 (1 bit
whole, 29 bits fractional), and the controller uses an 80 bit
accumulator. Only the 32 bit result of the multiplication is
output from each section.

See Also

MEIPostfilterSection

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/form2.htm (3 of 3) [7/27/2005 12:00:27 PM]

MPIFilterGain

MPIFilterGain

Definition

 typedef struct MPIFilterGain {
 MPIFilterCoeff coeff[MPIFilterCoeffCOUNT_MAX];

} MPIFilterGain;

Description

 coeff see MPIFilterCoeff

Sample Code

/* Sets reasonable tuning parameters for a Trust TA9000 test stand */
void setPIDs(MPIFilter filter)
{
 MPIFilterGain gain;
 long returnValue;

 returnValue = mpiFilterGainGet(filter, 0, &gain);
 msgCHECK(returnValue);

 gain.coeff[MEIFilterGainPIDCoeffGAIN_PROPORTIONAL].f = (float)100;
 gain.coeff[MEIFilterGainPIDCoeffGAIN_INTEGRAL].f = (float)0.2;
 gain.coeff[MEIFilterGainPIDCoeffGAIN_DERIVATIVE].f = (float)1000;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_POSITION].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_VELOCITY].f = (float)45;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_ACCELERATION].f = (float)101000;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_FRICTION].f = (float)450;
 gain.coeff[MEIFilterGainPIDCoeffINTEGRATIONMAX_MOVING].f = (float)15000;
 gain.coeff[MEIFilterGainPIDCoeffINTEGRATIONMAX_REST].f = (float)15000;
 gain.coeff[MEIFilterGainPIDCoeffDRATE].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_LIMIT].f = (float)32767;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_LIMITHIGH].f = (float)32767;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_LIMITLOW].f = (float)-32767;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_OFFSET].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffNOISE_POSITIONFFT].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffNOISE_FILTERFFT].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffNOISE_VELOCITYFFT].f = (float)0;

 returnValue = mpiFilterGainSet(filter, 0, &gain);
 msgCHECK(returnValue);
}

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/gn1.htm (1 of 2) [7/27/2005 12:00:18 PM]

MPIFilterGain

See Also

MPIFilterGainCOUNT_MAX | MEIFilterGainPIDCoeff | MEIFilterGainPIVCoeff

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/gn1.htm (2 of 2) [7/27/2005 12:00:18 PM]

MEIFilterGainIndex

MEIFilterGainIndex

Definition

 typedef enum {

 /* Gain table index for normal firmware. */
 MEIFilterGainIndexNO_MOTION = MEIXmpGainNOT_MOVING,
 MEIFilterGainIndexACCEL = MEIXmpGainACCEL,
 MEIFilterGainIndexDECEL = MEIXmpGainDECEL,
 MEIFilterGainIndexVELOCITY = MEIXmpGainCONSTANT_VEL,

 /* Gain table index for Custom 1 firmware. */
 MEIFilterGainIndexSTOPPING2 = MEIXmpGainSTOPPED2,
 MEIFilterGainIndexSTOPPING1 = MEIXmpGainSTOPPED1,
 MEIFilterGainIndexSETTLING = MEIXmpGainSETTLING,
 MEIFilterGainIndexMOVING = MEIXmpGainMOVING,
 MEIFilterGainIndexSTOPPING3 = MEIXmpGainSTOPPED3,

 /* Gain table index for Custom 5 firmware. */
 MEIFilterGainIndexMIN = MEIXmpGainMIN,
 MEIFilterGainIndexMAX = MEIXmpGainMAX,
 MEIFilterGainIndexNONE = MEIXmpGainNONE,
 MEIFilterGainIndexSLOPE = MEIXmpGainSLOPE,

 MEIFilterGainIndexLAST = MEIXmpGainLAST,
 MEIFilterGainIndexALL = MEIFilterGainIndexLAST,
 /* used for gain get/set() */
 MEIFilterGainIndexFIRST = MEIFilterGainIndexINVALID + 1,

 MEIFilterGainIndexDEFAULT = MEIFilterGainIndexNO_MOTION,
} MEIFilterGainIndex;

Description

MEIFilterGainIndex is an enumeration for the gain index used in gain scheduling.

In standard firmware, only
 MEIFilterGainIndexNO_MOTION,
 MEIFilterGainIndexACCEL,
 MEIFilterGainIndexDECEL, and
 MEIFilterGainIndexVELOCITY
are used. The gain index that is currently used can be found with
mpiFilterGainIndexGet(...).

Gain Scheduling is a feature that switches filter gains for the acceleration,

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/gninx2.htm (1 of 2) [7/27/2005 12:00:19 PM]

MEIFilterGainIndex

deceleration, constant velocity, and idle states of motion. The post filters are not
affected by gain scheduling. Standard algorithms are used with gain scheduling (PID,
PIV). To change the gain scheduling type from NONE (uses only the gains in gain
table index 0), use MEIFilterConfig. GainSwitchType is set with
mpiFilterConfigSet(...).

When setting filter gain parameters using mpiFilterGainGet(...) and
mpiFilterGainSet(...), use the gain index value to write to a gain index of your
choosing.

MEIFilterGainIndexNO_MOTION No commanded motion. Trajectory parameters Velocity,
Acceleration, and Jerk equal zero.

MEIFilterGainIndexACCEL Acceleration portion of the commanded move.

MEIFilterGainIndexDECEL Deceleration portion of the commanded move.

MEIFilterGainIndexVELOCITY Constant velocity portion of the commanded move. Gain
switching is configured by setting the GainSwtichType,
GainDelay, and GainWindow in the MEIFilterConfig{...}
structure and calling mpiFilterConfigGet/Set(...). The
GainSwitchType has the following options:

See Also

MEIFilterConfig | mpiFilterConfigGet | mpiFilterConfigSet | MEIXmpSwitchType |
mpiFilterGainIndexSet | mpiFilterGainIndexGet | mpiFilterGainGet | mpiFilterGainSet

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/gninx2.htm (2 of 2) [7/27/2005 12:00:19 PM]

file:///C|/htmlhelp/Software-MPI/docs/Xmp/DataType/switchty2.htm

MEIFilterGainPID

MEIFilterGainPID

Definition

 typedef struct MEIFilterGainPID {
 struct {
 float proportional; /* Kp */
 float integral; /* Ki */
 float derivative; /* Kd */
 } gain;
 struct {
 float position; /* Kpff */
 float velocity; /* Kvff */
 float acceleration; /* Kaff */
 float friction; /* Kfff */
 } feedForward;
 struct {
 float moving; /* MovingIMax */
 float rest; /* RestIMax */
 } integrationMax;
 long dRate; /* DRate */
 struct {
 float limit; /* OutputLimit */
 float limitHigh; /* OutputLimitHigh */
 float limitLow; /* OutputLimitLow */
 float offset; /* OutputOffset */
 } output;
 struct {
 float positionFFT; /* Ka0 */
 float filterFFT; /* Ka1 */
 float velocityFFT; /* Ka2 */
 } noise;
} MEIFilterGainPID;

Description

MEIFilterGainPID is a structure that defines the filter coefficients for the PID filter
algorithm.

See Also

High/Low Output Limits section for special instructions regarding MEIFilterGainPID.
MEIFilterGainPIDCoeff

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/gnpid2.htm (1 of 2) [7/27/2005 12:00:22 PM]

MEIFilterGainPIV

MEIFilterGainPIV

Definition

 typedef struct MEIFilterGainPIV {
 struct {
 float proportional; /* Kpp */
 float integral; /* Kip */
 } gainPosition;
 struct {
 float proportional; /* Kpv */
 } gainVelocity1;
 struct {
 float position; /* Kpff */
 float velocity; /* Kvff */
 float acceleration; /* Kaff */
 float friction; /* Kfff */
 } feedForward;
 struct {
 float moving; /* MovingIMax */
 float rest; /* RestIMax */
 } integrationMax;
 struct {
 float feedback; /* Kdv */
 } gainVelocity2;
 struct {
 float limit; /* OutputLimit */
 float limitHigh; /* OutputLimitHigh */
 float limitLow; /* OutputLimitLow */
 float offset; /* OutputOffset */
 } output;
 struct {
 float integral; /* Kiv */
 float integrationMax; /* VintMax */
 } gainVelocity3;
 struct {
 float positionFFT; /* Ka0 */
 float smoothing; /* Ka1 */
 float filterFFT; /* Ka2 */
 } noise;
} MEIFilterGainPIV;

 Change History: Modified in the 03.02.00

Description

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/gnpiv2.htm (1 of 2) [7/27/2005 12:00:22 PM]

MEIFilterGainPIV

MEIFilterGainPIV is a structure that defines the filter coefficients for the PIV filter
algorithm.

See Also

High/Low Output Limits section for special instructions regarding MEIFilterGainPIV.
MEIFilterGainPIVCoeff

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/gnpiv2.htm (2 of 2) [7/27/2005 12:00:22 PM]

MEIFilterGainPIDCoeff

MEIFilterGainPIDCoeff

Definition

 typedef enum {
 MEIFilterGainPIDCoeffGAIN_PROPORTIONAL, /* Kp */
 MEIFilterGainPIDCoeffGAIN_INTEGRAL, /* Ki */
 MEIFilterGainPIDCoeffGAIN_DERIVATIVE, /* Kd */

 MEIFilterGainPIDCoeffFEEDFORWARD_POSITION, /* Kpff */
 MEIFilterGainPIDCoeffFEEDFORWARD_VELOCITY, /* Kvff */
 MEIFilterGainPIDCoeffFEEDFORWARD_ACCELERATION, /* Kaff */
 MEIFilterGainPIDCoeffFEEDFORWARD_FRICTION, /* Kfff */

 MEIFilterGainPIDCoeffINTEGRATIONMAX_MOVING, /* MovingIMax */
 MEIFilterGainPIDCoeffINTEGRATIONMAX_REST, /* RestIMax */

 MEIFilterGainPIDCoeffDRATE, /* DRate */

 MEIFilterGainPIDCoeffOUTPUT_LIMIT, /* OutputLimit */
 MEIFilterGainPIDCoeffOUTPUT_LIMITHIGH, /* OutputLimitHigh */
 MEIFilterGainPIDCoeffOUTPUT_LIMITLOW, /* OutputLimitLow */
 MEIFilterGainPIDCoeffOUTPUT_OFFSET, /* OutputOffset */

 MEIFilterGainPIDCoeffNOISE_POSITIONFFT, /* Ka0 */
 MEIFilterGainPIDCoeffNOISE_FILTERFFT, /* Ka1 */
 MEIFilterGainPIDCoeffNOISE_VELOCITYFFT, /* Ka2 */
} MEIFilterGainPIDCoeff;

Description

MEIFilterGainPIDCoeff is a structure of enums that defines the filter coefficients for the
PID filter algorithm.

Sample Code

/* Sets reasonable tuning parameters for a Trust TA9000 test stand */
void setPIDs(MPIFilter filter)
{
 MPIFilterGain gain;
 long returnValue;

 returnValue = mpiFilterGainGet(filter, 0, &gain);
 msgCHECK(returnValue);

 gain.coeff[MEIFilterGainPIDCoeffGAIN_PROPORTIONAL].f = (float)100;
 gain.coeff[MEIFilterGainPIDCoeffGAIN_INTEGRAL].f = (float)0.2;
 gain.coeff[MEIFilterGainPIDCoeffGAIN_DERIVATIVE].f = (float)1000;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_POSITION].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_VELOCITY].f = (float)45;

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/gnpidcoef2.htm (1 of 2) [7/27/2005 12:00:26 PM]

MEIFilterGainPIDCoeff

 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_ACCELERATION].f = (float)101000;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_FRICTION].f = (float)450;
 gain.coeff[MEIFilterGainPIDCoeffINTEGRATIONMAX_MOVING].f = (float)15000;
 gain.coeff[MEIFilterGainPIDCoeffINTEGRATIONMAX_REST].f = (float)15000;
 gain.coeff[MEIFilterGainPIDCoeffDRATE].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_LIMIT].f = (float)32767;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_LIMITHIGH].f = (float)32767;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_LIMITLOW].f = (float)-32767;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_OFFSET].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffNOISE_POSITIONFFT].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffNOISE_FILTERFFT].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffNOISE_VELOCITYFFT].f = (float)0;

 returnValue = mpiFilterGainSet(filter, 0, &gain);
 msgCHECK(returnValue);
}

See Also

MEIFilterGainPID

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/gnpidcoef2.htm (2 of 2) [7/27/2005 12:00:26 PM]

MEIFilterGainPIVCoeff

MEIFilterGainPIVCoeff

Definition

 typedef enum {
 MEIFilterGainPIVCoeffGAINPOSITION_PROPORTIONAL, /* Kpp */
 MEIFilterGainPIVCoeffGAINPOSITION_INTEGRAL, /* Kip */

 MEIFilterGainPIVCoeffGAINVELOCITY_PROPORTIONAL, /* Kpv */

 MEIFilterGainPIVCoeffFEEDFORWARD_POSITION, /* Kpff */
 MEIFilterGainPIVCoeffFEEDFORWARD_VELOCITY, /* Kvff */
 MEIFilterGainPIVCoeffFEEDFORWARD_ACCELERATION, /* Kaff */
 MEIFilterGainPIVCoeffFEEDFORWARD_FRICTION, /* Kfff */

 MEIFilterGainPIVCoeffINTEGRATIONMAX_MOVING, /* MovingIMax */
 MEIFilterGainPIVCoeffINTEGRATIONMAX_REST, /* RestIMax */

 MEIFilterGainPIVCoeffGAINVELOCITY_FEEDBACK, /* Kdv */

 MEIFilterGainPIVCoeffOUTPUT_LIMIT, /* OutputLimit */
 MEIFilterGainPIVCoeffOUTPUT_LIMITHIGH, /* OutputLimitHigh */
 MEIFilterGainPIVCoeffOUTPUT_LIMITLOW, /* OutputLimitLow */
 MEIFilterGainPIVCoeffOUTPUT_OFFSET, /* OutputOffset */

 MEIFilterGainPIVCoeffGAINVELOCITY_INTEGRAL, /* Kiv */
 MEIFilterGainPIVCoeffGAINVELOCITY_INTEGRATIONMAX, /* Vintmax */

 MEIFilterGainPIVCoeffNOISE_POSITIONFFT, /* Ka0 */
 MEIFilterGainPIVCoeffSMOOTHINGFILTER_GAIN, /* Ka1 */
 MEIFilterGainPIVCoeffNOISE_FILTERFFT, /* Ka2 */
} MEIFilterGainPIVCoeff;

 Change History: Modified in the 03.02.00

Description

MEIFilterGainPIVCoeff is a structure of enums that defines the filter coefficients for the PIV
filter algorithm.

Sample Code

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/gnpivcoef2.htm (1 of 2) [7/27/2005 12:00:27 PM]

MEIFilterGainPIVCoeff

/* Sets reasonable tuning parameters for a Trust TA9000 test stand */
void setPIDs(MPIFilter filter)
{
 MPIFilterGain gain;
 long returnValue;

 returnValue = mpiFilterGainGet(filter, 0, &gain);
 msgCHECK(returnValue);

 gain.coeff[MEIFilterGainPIDCoeffGAIN_PROPORTIONAL].f = (float)100;
 gain.coeff[MEIFilterGainPIDCoeffGAIN_INTEGRAL].f = (float)0.2;
 gain.coeff[MEIFilterGainPIDCoeffGAIN_DERIVATIVE].f = (float)1000;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_POSITION].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_VELOCITY].f = (float)45;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_ACCELERATION].f = (float)101000;
 gain.coeff[MEIFilterGainPIDCoeffFEEDFORWARD_FRICTION].f = (float)450;
 gain.coeff[MEIFilterGainPIDCoeffINTEGRATIONMAX_MOVING].f = (float)15000;
 gain.coeff[MEIFilterGainPIDCoeffINTEGRATIONMAX_REST].f = (float)15000;
 gain.coeff[MEIFilterGainPIDCoeffDRATE].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_LIMIT].f = (float)32767;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_LIMITHIGH].f = (float)32767;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_LIMITLOW].f = (float)-32767;
 gain.coeff[MEIFilterGainPIDCoeffOUTPUT_OFFSET].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffNOISE_POSITIONFFT].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffNOISE_FILTERFFT].f = (float)0;
 gain.coeff[MEIFilterGainPIDCoeffNOISE_VELOCITYFFT].f = (float)0;

 returnValue = mpiFilterGainSet(filter, 0, &gain);
 msgCHECK(returnValue);
}

See Also

High/Low Output Limits section for special instructions regarding MEIFilterGainPIV.
MEIFilterGainPIV

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/gnpivcoef2.htm (2 of 2) [7/27/2005 12:00:27 PM]

MEIFilterGainTypePID

MEIFilterGainTypePID

Definition

 static MEIDataType MEIFilterGainTypePID[MPIFilterCoeffCOUNT_MAX] =

{
 MEIDataTypeFLOAT, /* Kp */
 MEIDataTypeFLOAT, /* Ki */
 MEIDataTypeFLOAT, /* Kd */

 MEIDataTypeFLOAT, /* Kpff */
 MEIDataTypeFLOAT, /* Kvff */
 MEIDataTypeFLOAT, /* Kaff */
 MEIDataTypeFLOAT, /* Kfff */

 MEIDataTypeFLOAT, /* MovingIMax */
 MEIDataTypeFLOAT, /* RestIMax */

 MEIDataTypeLONG, /* DRate */

 MEIDataTypeFLOAT, /* OutputLimit */
 MEIDataTypeFLOAT, /* OutputLimitHigh */
 MEIDataTypeFLOAT, /* OutputLimitLow */
 MEIDataTypeFLOAT, /* OutputOffset */
 MEIDataTypeFLOAT, /* Ka0 */
 MEIDataTypeFLOAT, /* Ka1 */
 MEIDataTypeFLOAT, /* Ka2 */
};

Description

MEIFilterGainTypePID is a static array that describes the data type of the coefficients for
the PID algorithm. Specifically, an element of MEIFilterGainTypePID describes which
member of the union MPIFilterCoeff to access when using the data structure
MPIFilterCoeff.

MEIFilterGainTypePID allows for a more simple design of general case utilities and
configuration routines. If it is known that only the PID parameters will be used, then the data
structure MEIFilterGainPID can be used directly without having to manipulate
MPIFilterCoeff, MPIFilterCoeff, and MEIFilterGainTypePID.

Sample Code

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/gntypid2.htm (1 of 2) [7/27/2005 12:00:28 PM]

MEIFilterGainTypePID

/* Read the current value of a filter's PID coefficient. Sample usage:

 returnValue =
 getPidFilterCoeff(filter, MEIFilterGainPIDCoeffGAIN_PROPORTIONAL, &kp);
*/
long getPidFilterCoeff(MPIFilter filter, long index, double* value)
{

 MPIFilterConfig config;
 long returnValue = (value==NULL) ? MPIMessageARG_INVALID : MPIMessageOK;

 if (returnValue == MPIMessageOK)
 {
 returnValue = mpiFilterConfigGet(filter, &config, NULL);

 if (returnValue == MPIMessageOK)
 {
 switch(MEIFilterGainTypePID[index])
 {
 case MEIDataTypeLONG:
 *value = config.gain[config.gainIndex].coeff[index].l;
 break;
 case MEIDataTypeFLOAT:
 *value = config.gain[config.gainIndex].coeff[index].f;
 break;
 default:
 returnValue = MPIMessageARG_INVALID;
 }
 }
 }
return returnValue;
}

See Also

MPIFilterCoeff | MEIFilterGainTypePIV | MEIFilterGainPID | MEIDataType | MPIFilterGain

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/gntypid2.htm (2 of 2) [7/27/2005 12:00:28 PM]

file:///C|/htmlhelp/Software-MPI/docs/Global/DataType/dtaty2.htm

MEIFilterGainTypePIV

MEIFilterGainTypePIV

Definition

 static MEIDataType MEIFilterGainTypePIV[MPIFilterCoeffCOUNT_MAX] =

{
 MEIDataTypeFLOAT, /* Kpp */
 MEIDataTypeFLOAT, /* Kip */

 MEIDataTypeFLOAT, /* Kpv */

 MEIDataTypeFLOAT, /* Kpff */
 MEIDataTypeFLOAT, /* Kvff */
 MEIDataTypeFLOAT, /* Kaff */
 MEIDataTypeFLOAT, /* Kfff */

 MEIDataTypeFLOAT, /* MovingIMax */
 MEIDataTypeFLOAT, /* RestIMax */

 MEIDataTypeFLOAT, /* Kdv */

 MEIDataTypeFLOAT, /* OutputLimit */
 MEIDataTypeFLOAT, /* OutputLimitHigh */
 MEIDataTypeFLOAT, /* OutputLimitLow */
 MEIDataTypeFLOAT, /* OutputOffset */

 MEIDataTypeFLOAT, /* Kiv */
 MEIDataTypeFLOAT, /* Vintmax */
 MEIDataTypeFLOAT, /* Ka0 */
 MEIDataTypeFLOAT, /* Ka1 */
 MEIDataTypeFLOAT, /* Ka2 */
};

Description

MEIFilterGainTypePIV is a static array that describes the data type of the coefficients for the PIV
algorithm. Specifically, an element of MEIFilterGainTypePIV describes which member of the union
MPIFilterCoeff to access when using the data structure MPIFilterCoeff.

MEIFilterGainTypePIV allows for a more simple design of general case utilities and configuration
routines. If it is known that only the PIV parameters will be used, then the data structure
MEIFilterGainPIV can be used directly without having to manipulate MPIFilterCoeff, MPIFilterCoeff,
and MEIFilterGainTypePIV.

Sample Code

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/gntypiv2.htm (1 of 2) [7/27/2005 12:00:28 PM]

MEIFilterGainTypePIV

/* Read the current value of a filter's PIV coefficient. Sample usage:

 returnValue =
 getPivFilterCoeff(filter, MEIFilterGainPIVCoeffGAINVELOCITY_PROPORTIONAL,
&kpv);
*/
long getPivFilterCoeff(MPIFilter filter, long index, double* value)
{
 MPIFilterConfig config;
 long returnValue = (value==NULL) ? MPIMessageARG_INVALID : MPIMessageOK;

 if (returnValue == MPIMessageOK)
 {

 returnValue = mpiFilterConfigGet(filter, &config, NULL);

 if (returnValue == MPIMessageOK)
 {
 switch(MEIFilterGainTypePIV[index])
 {
 case MEIDataTypeLONG:
 *value = config.gain[config.gainIndex].coeff[index].l;
 break;
 case MEIDataTypeFLOAT:
 *value = config.gain[config.gainIndex].coeff[index].f;
 break;
 default:
 returnValue = MPIMessageARG_INVALID;
 }
 }
 }

 return returnValue;
}

See Also

MPIFilterCoeff | MEIFilterGainTypePID | MEIFilterGainPIV | MEIDataType | MPIFilterGain

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/gntypiv2.htm (2 of 2) [7/27/2005 12:00:28 PM]

file:///C|/htmlhelp/Software-MPI/docs/Global/DataType/dtaty2.htm

MPIFilterMessage

MPIFilterMessage

Definition

typedef enum {
 MPIFilterMessageFILTER_INVALID,
 MPIFilterMessageINVALID_ALGORITHM,
 MPIFilterMessageINVALID_DRATE,
 MPIFilterMessageCONVERSION_DIV_BY_0,
 MPIFilterMessageSECTION_NOT_ENABLED,
 MPIFilterMessageINVALID_FILTER_FORM,
} MPIFilterMessage;

Description

MPIFilterMessage is an enumeration of Filter error messages that can be returned by
the MPI library.

MPIFilterMessageFILTER_INVALID

The filter number is out of range. This message code is returned by mpiFilterCreate(...) if the filter
number is less than zero or greater than or equal to MEIXmpMAX_Filters.

MPIFilterMessageINVALID_ALGORITHM

The filter algorithm is not valid. This message code is returned by mpiFilterIntegratorReset(...) if the
filter algorithm is not a member of the MEIXmpAlgorithm enumeration (does not support
integrators). This problem occurs if the filter type is set to user or an unknown type with
mpiFilterConfigSet(...).

MPIFilterMessageINVALID_DRATE

The filter derivative rate is not valid. This message code is returned by mpiFilterConfigSet(...) if the
filter derivative rate is less than 0 or greater than 7.

NOTE: The derivative rate for all gain tables must be in the range [0,7], not just the derivative rate
for the current gain table.

MPIFilterMessageCONVERSION_DIV_BY_0

Returned when meiFilterPostfilterGet(...) or meiFilterPostfilterSectionGet(...) cannot convert digital
coefficients to analog coefficients. When this error occurs, the offending section(s) will report its
type as MEIFilterTypeUNKNOWN and will not contain any analog data.

MPIFilterMessageSECTION_NOT_ENABLED

Returned when meiFilterPostfilterGet(...) or meiFilterPostfilterSectionGet(...) attempt to read
postfilter data when no postfilter sections are enabled.

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/mes1.htm (1 of 2) [7/27/2005 12:00:28 PM]

MPIFilterMessage

MPIFilterMessageINVALID_FILTER_FORM

Returned when meiFilterPostfilterGet(...) or meiFilterPostfilterSectionGet(...) cannot interpret the
current postfilter's form (when the form is something other than NONE, IIR, or BIQUAD).

See Also

mpiFilterCreate

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/mes1.htm (2 of 2) [7/27/2005 12:00:28 PM]

MEIFilterType

MEIFilterType

Definition

 typedef enum {
 MEIFilterTypeUNITY_GAIN,
 /* B0 = 1 B1=B2=A1=A2 = 0
 (effectively acting as no filter) */
 MEIFilterTypeSINGLE_ORDER,
 MEIFilterTypeLOW_PASS,
 MEIFilterTypeHIGH_PASS,
 MEIFilterTypeNOTCH,
 MEIFilterTypeRESONATOR,
 MEIFilterTypeLEAD_LAG,
 MEIFilterTypeZERO_GAIN,
 /* b0=b1=b2=a1=a2 = 0
 (this does act as a filter.... zeroing the output) */
 MEIFilterTypeBIQUAD,
 /* Only valid for setting.
 Reading will not return these types */
 MEIFilterTypeDIGITAL_BIQUAD,
 MEIFilterTypePOLES_ZEROS,
 MEIFilterTypeDIGITAL_POLES_ZEROS,
 MEIFilterTypeUNKNOWN,
 /* algorithm couldn't figure out what
 this filter was from the coeffs! */
} MEIFilterType;

Description

NOTE: The MPI will attempt to return analog & digital biquad and pole/zero
information from meiFilterPostfilterGet(...) and meiFilterPostfilterSectionGet(...).
However, the filter types MEIFilterTypeDIGITAL_BIQUAD,
MEIFilterTypePOLES_ZEROS, and MEIFilterTypeDIGITAL_POLES_ZEROS are
never returned by get() calls -- they are used only for setting postfilters.
MEIFilterTypeBIQUAD will only be returned by meiFilterPostfilterGet(...) and
meiFilterPostfilterSectionGet(...) if the analog coefficients can be calculated (there is
no division by 0) and the section cannot be identified as one of the other analog filter
types.

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/ty2.htm (1 of 2) [7/27/2005 12:00:29 PM]

MEIFilterType

MEIFilterTypeUNITY_GAIN A unity gain filter. This effectively performs no
filtering.

MEIFilterTypeSINGLE_ORDER A single order filter

MEIFilterTypeLOW_PASS A low pass filter

MEIFilterType_HIGH_PASS A high pass filter.

MEIFilterTypeNOTCH A notch filter

MEIFilterTypeRESONATOR A resonator filter.

MEIFilterTypeLEAD_LAG A lead or lag filter.

MEIFilterTypeZERO_GAIN Zeros the output of a filter.

MEIFilterTypeBIQUAD An analog biquad filter. When reading postfilter
data, this type means that the postfilter section could
not be identified as a standard filter type.

MEIFilterTypeDIGITAL_BIQUAD A digital biquad filter. This is only used for setting
postfilter sections.

MEIFilterTypePOLES_ZERO Analog poles and zeros filter (maximum of two
poles and zeros) with unity zero-frequency
amplitude. This is only used for setting postfilter
sections.

MEIFilterTypeDIGITAL_POLES_ZEROS Digital poles and zeros filter (maximum of two
poles and zeros) with unity zero-frequency
amplitude. This is only used for setting postfilter
sections.

MEIFilterTypeUNKNOWN Returned by meiFilterPostfilterGet(...) and
meiFilterPostfilterSectionGet(...) if analog
coefficients cannot be found. only digital data will
be available.

See Also

MEIPostfilterSection | meiFilterPosterfilterGet | meiFilterPosterfilterSet |
meiFilterPosterfilterSectionGet | meiFilterPosterfilterSectionSet

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/ty2.htm (2 of 2) [7/27/2005 12:00:29 PM]

MEIPostfilterSection

MEIPostfilterSection

Definition

 typedef struct MEIPostfilterSection {
 MEIFilterType type;

 MEIFilterForm form;

 struct {
 struct {
 double breakPoint; /* Hz */
 } lowPass;

 struct {
 double breakPoint; /* Hz */
 } highPass;

 struct {
 double centerFrequency; /* Hz */
 double bandwidth; /* Hz */
 } notch;

 struct {
 double centerFrequency; /* Hz */
 double bandwidth; /* Hz */
 double gain; /* dB */
 } resonator;

 struct {
 double lowFrequencyGain; /* dB */
 double highFrequencyGain; /* dB */
 double centerFrequency; /* Hz */
 } leadLag;

 struct {
 double a1;
 double a2;
 double b0;
 double b1;
 double b2;
 } biquad;

 struct {
 double a1;
 double a2;
 double b0;
 double b1;
 double b2;
 } digitalBiquad;

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/postftrsect2.htm (1 of 12) [7/27/2005 12:00:24 PM]

MEIPostfilterSection

 struct {
 long poleCount;
 long zeroCount;
 struct {
 double real;
 double imag;
 } pole[2];
 struct {
 double real;
 double imag;
 } zero[2];
 } polesZeros;

 struct {
 long poleCount;
 long zeroCount;
 struct {
 double real;
 double imag;
 } pole[2];
 struct {
 double real;
 double imag;
 } zero[2];
 } digitalPolesZeros;

 struct {
 double d1;
 double c1;
 double c2;
 double a2;
 double a1;
 double b1;
 } stateSpaceBiquad;
 } data;
} MEIPostfilterSection;

Description

MEIPostfilterSection holds the configuration data for a single section of an MPIFilter
object's postfilter. The MPI calculates the post filter coefficients and takes into
consideration the sample rate of the controller at that time. If you change the sample
rate of the controller, you will need to recalculate the post filters. This can be done for
all filters specified in Hertz by setting the filters again with the MPI. The MPI will
calculate the filters using the current servo sample rate.

Postfilters are used to digitally filter the output of a control loop. One common use for
postfilters is the compensation of system resonances.

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/postftrsect2.htm (2 of 12) [7/27/2005 12:00:24 PM]

MEIPostfilterSection

type The postfilter section type. This field determines which field of the
MEIPostfilterSection.data union is used by meiFilterPostfilter.() methods.
More information about particular filter types can be found below and in
the MEIFilterType documentation.

form The form of a postfilter section. The form determines how a particular
postfilter section is calculated on the controller. All forms have certain
limitations and tradeoffs. Please refer to MEIFilterForm for more
information.

lowPass.breakpoint The break point (measured in Hertz) of a low pass postfilter section.

Example of a 50 Hz low pass filter.

highPass.breakpoint The break point (measured in Hertz) of a high pass postfilter section.

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/postftrsect2.htm (3 of 12) [7/27/2005 12:00:24 PM]

MEIPostfilterSection

Example of a 50 Hz High pass filter

notch.centerFrequency The center frequency (measured in Hertz) of a notch postfilter section.

Example of a 50 Hz Center / 50 Hz Bandwidth Notch filter. Note that
phase wrapping gives the illusion that phase drops 180 degrees after the

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/postftrsect2.htm (4 of 12) [7/27/2005 12:00:24 PM]

MEIPostfilterSection

center frequency. The phase raises by 180 degrees.

notch.bandwidth The bandwidth (measured in Hertz) of a notch postfilter section.

Example of a 50 Hz Center / 50 Hz Bandwidth Notch filter. Note that
phase wrapping gives the illusion that phase drops 180 degrees after the
center frequency. The phase raises by 180 degrees.

resonator.centerFrequency The center frequency (measured in Hertz) of a resonator postfilter section.

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/postftrsect2.htm (5 of 12) [7/27/2005 12:00:24 PM]

MEIPostfilterSection

Example of a 50 Hz center / 50 Hz Bandwidth / -40 dB Gain Resonator
filter. Note that phase wrapping gives the illusion that the phase drops 360
degrees after the center frequency.

resonator.bandwidth The bandwidth (measured in Hertz) of a resonator postfilter section.

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/postftrsect2.htm (6 of 12) [7/27/2005 12:00:24 PM]

MEIPostfilterSection

Example of a 50 Hz center / 50 Hz Bandwidth / -40 dB Gain Resonator
filter. Note that phase wrapping gives the illusion that the phase drops 360
degrees after the center frequency.

resonator.gain The center frequency gain (measured in dB) of a resonator postfilter
section.

Example of a 50 Hz center / 50 Hz Bandwidth / -40 dB Gain Resonator
filter. Note that phase wrapping gives the illusion that the phase drops 360
degrees after the center frequency.

leadLag.centerFrequency The center frequency (measured in Hertz) of a lead or lag postfilter
section. The amplitude at this frequency is the average amplitude of the
low and high frequency amplitudes. The gain (measured in dB) at this
point is given by:

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/postftrsect2.htm (7 of 12) [7/27/2005 12:00:24 PM]

MEIPostfilterSection

Example of a -20 dB low frequency gain / -60 dB high frequency gain /
50 Hz center lead lag filter.

leadLag.lowFrequencyGain The low frequency gain (measured in dB) of a lead or lag postfilter
section.

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/postftrsect2.htm (8 of 12) [7/27/2005 12:00:24 PM]

MEIPostfilterSection

Example of a -20 dB low frequency gain / -60 dB high frequency gain /
50 Hz center lead lag filter.

leadLag.highFrequencyGain The high frequency gain (measured in dB) of a lead or lag postfilter
section.

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/postftrsect2.htm (9 of 12) [7/27/2005 12:00:24 PM]

MEIPostfilterSection

Example of a -20 dB low frequency gain / -60 dB high frequency gain /
50 Hz center lead lag filter.

biquad.a1 The analog coefficients of a single order or bi-quad postfilter section.

Analog values of the postfilter coefficients are produced as parts of a
Laplace Transform:

and

biquad.a2

biquad.b0

biquad.b1

biquad.b2

digitalBiquad.a1

The digital coefficients of a single order or bi-quad postfilter section.

digitalBiquad.a2

digitalBiquad.b0

digitalBiquad.b1

digitalBiquad.b2

digitalBiquad.d1

The digital coefficients of a state-space bi-quad postfilter section.

digitalBiquad.c1

digitalBiquad.c2

digitalBiquad.a2

digitalBiquad.a1

digitalBiquad.b1

polesZeros.poleCount

Analog poles and zeros.
polesZeros.zeroCount

polesZeros.pole[].real

polesZeros.pole[].imag

digitalPolesZeros.poleCount

Digital poles and zeros.
digitalPolesZeros.zeroCount

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/postftrsect2.htm (10 of 12) [7/27/2005 12:00:24 PM]

MEIPostfilterSection

digitalPolesZeros.pole[].real

digitalpolesZeros.pole[].imag

stateSpaceBiquad.d1

State space coefficients.

stateSpaceBiquad.c1

stateSpaceBiquad.c2

stateSpaceBiquad.a2

stateSpaceBiquad.a1

stateSpaceBiquad.b1

Sample Code

/* Set a 4th order low-pass post-filter by using two
 2nd order low-pass sections.
 Sample usage:

 returnValue =
 fourthOrderLowPass(filter, 300 /* Hz */);
*/
long filterFouthOrderLowpass(MPIFilter filter, long breakPointFrequency)
{
 MPIFilterConfig config;
 MEIPostfilterSection sections[2];
 long returnValue;

 section[0].type = MEIFilterTypeLOW_PASS;
 section[0].form = MEIFilterFormINT_BIQUAD;
 section[0].lowPass.breakpoint = breakPointFrequency;
 section[1] = section[0]; /* copy first section */

 returnValue =
 meiFilterPostfilterSet(filter, 2, sections);

 return returnValue;
}

See Also

MEIFilterType | MEIFilterForm | MEIMaxIIRCoefficients | meiFilterPostfilterGet |
meiFilterPostfilterSet | meiFilterPostfilterSectionGet | meiFilterPostfilterSectionSet |
Post Filter Theory

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/postftrsect2.htm (11 of 12) [7/27/2005 12:00:24 PM]

MEIMaxBiQuadSections

MEIMaxBiQuadSections

Definition

 #define MEIMaxBiQuadSections (6)

Description

MEIMaxBiQuadSections is the maximum number of Bi-Quad sections a postfilter
can use.

NOTE: The PIV algorithm uses the last Bi-Quad section internally. Thus a user can
only use (MEIMaxBiQuadSections - 1) Bi-quad sections with the PIV algorithm.

See Also

MEIPostFilterSection | meiFilterPostfilterGet | meiFilterPostfilterSet |
meiFilterPostfilterSectionGet | meiFilterPostfilterSectionSet

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/maxbiquadsect2.htm [7/27/2005 12:00:29 PM]

MPIFilterCoeffCOUNT_MAX

MPIFilterCoeffCOUNT_MAX

Definition

 #define MPIFilterCoeffCOUNT_MAX (20)

Description

MPIFilterCoeffCOUNT_MAX is a constant that defines the maximum number of filter
coefficients contained in a gain table.

See Also

MPIFilterCoeff

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/coefcntmax4.htm [7/27/2005 12:00:26 PM]

MPIFilterGainCOUNT_MAX

MPIFilterGainCOUNT_MAX

Definition

 #define MPIFilterGainCOUNT_MAX (5)

Description

MPIFilterGainCOUNT_MAX is a constant that defines the maximum number of filter
gain tables. The first gain table is used by the standard filter types (all filter types
except for the user filter type as defined by the structure MEIXmpAlgorithm).
Additional gain tables can be used for manual or automatic gain switching. For
firmware that implements automatic gain switching, please contact MEI. Manual gain
switching can be accomplished by specifying the gainIndex of the mpiFilterConfig
structure using the mpiFilterConfigSet method. Valid gainIndex values range from 0 to
MPIFilterGainCOUNT_MAX.

See Also

MPIFilterGain

file:///C|/htmlhelp/Software-MPI/docs/Filter/DataType/gncntmax4.htm [7/27/2005 12:00:27 PM]

mailto:%20support@motioneng.com

High / Low Output Limits (MEIFilterGainPID and PIV)

Special Note: High / Low Output Limits
(MEIFilterGainPID and PIV)

In the 19990820 release, the MEIFilterGainPID and MEIFilterGainPIV structures were
expanded to support High and Low output limits for PID and PIV algorithms. The
"High" output limit prevents the filter output from exceeding the "High" value. The
"Low" output limit prevents the filter output from falling below the "Low" value. This
feature will allow an application to have upper and lower limits which are not centered
on zero volts. If the "High" and "Low" values have the same sign, then the output will
be limited to either the positive or negative range bounded by "High" and "Low."

The standard Output Limit is still valid. The controller will simultaneously use the
standard Output Limit and the High / Low Output Limits to bound the output. The
limits, (standard or high or low) that are closest to zero will be used as the boundary
for the output.

Return to MEIFilterGainPID or MEIFilterGainPIV

file:///C|/htmlhelp/Software-MPI/docs/Filter/Topics/hi_lo_otpt.htm [7/27/2005 12:00:28 PM]

Post Filter Theory

Post Filter Theory
Laplacian Space | Z Space | Z Transform Stability

Laplacian Space

Analog values of the postfilter coefficients are produced as parts of a Laplace Transform:

The amplitude and phase of the filter can be derived from the above by:

 is similar to except that the returned angle can be in the range
from to .

From here we can calculate the gain (in dB) of the filter:

The filter types are designed as follows:

file:///C|/htmlhelp/Software-MPI/docs/Filter/Topics/post_filter_theory.htm (1 of 6) [7/27/2005 12:00:25 PM]

Post Filter Theory

Low Pass

High Pass

Notch

Resonator

file:///C|/htmlhelp/Software-MPI/docs/Filter/Topics/post_filter_theory.htm (2 of 6) [7/27/2005 12:00:25 PM]

Post Filter Theory

Lead, Lag

Additional Notes:

For the resonator filter, the maximum and minimum phase changes will occur at:

These frequencies also happen to be the half-gain points measured in dB (or the root-
amplitude gain points).

For the lead/lag filters, the maximal phase change will occur at:

This frequency also happens to be the dB gain mean point measured (or the amplitude
gain geometric mean point).

Z Space

Though Laplacian Space is useful for designing or quickly analyzing a bi-quad filter's
design, it does not accurately model digital bi-quad filters. Digital filters are described
naturally by Z transforms. It is possible to convert a filter from a Laplace transform to a Z

file:///C|/htmlhelp/Software-MPI/docs/Filter/Topics/post_filter_theory.htm (3 of 6) [7/27/2005 12:00:25 PM]

Post Filter Theory

transform, as will be described below, while maintaining the same general characteristics.
The amplitude and phase information will be slightly warped by moving into Z space. One
should note, however, that for the filters listed above the characteristics of gains,
bandwidths, and center or breakpoint frequencies are unchanged.

Bi-quad filters are described by the following Z transform:

One should note that only filters where the roots of the denominator lie within the unit
circle are stable. Though digital filters can be constructed where the equations for
amplitude and phase for both the Z transform version and the Laplace transform version
may converge, the filter itself will be unstable, continually adding energy to the system.
Please see the Z Transform Stability Section below.

The equations for amplitude, phase and dB gain can be derived from the above Z
transform:

The equations for converting between the analog (Laplace transform) coefficients and the
digital (Z transform) coefficients are handled internally by the MPI, but are listed below so
that one can accurately analyze the performance of the bi-quad filters.

file:///C|/htmlhelp/Software-MPI/docs/Filter/Topics/post_filter_theory.htm (4 of 6) [7/27/2005 12:00:25 PM]

Post Filter Theory

Bi-quad Postfilter Bi-linear Postfilter (a2 = b2 = 0)

Z Transform Stability

As briefly described in the last section, it is possible for the digital filters constructed from
analog filters to be unstable. One needs to ensure that:

● The filter does not continually add energy to a system.

● The filter has no phase lag at 0 frequency. (A filter with 180° phase lag will create
unstable closed loop systems.)

To guarantee a filter does not continually add energy to a system, the following
relationship must be satisfied by the Z transform coefficients:

file:///C|/htmlhelp/Software-MPI/docs/Filter/Topics/post_filter_theory.htm (5 of 6) [7/27/2005 12:00:25 PM]

Post Filter Theory

To guarantee a filter has no phase lag at 0 frequency, the following relationship must be
satisfied by the Z transform coefficients:

If it is found that this last condition is not true, then one should change the sign on all Bn
coefficients. Equivalently, one can change the sign of all bn coefficients for the Laplace
(analog) transform.

Return to Filter Objects

file:///C|/htmlhelp/Software-MPI/docs/Filter/Topics/post_filter_theory.htm (6 of 6) [7/27/2005 12:00:25 PM]

	Filter Objects
	Methods
	mpiFilterCreate
	mpiFilterDelete
	mpiFilterValidate
	mpiFilterConfigGet
	mpiFilterConfigSet
	mpiFilterFlashConfigGet
	mpiFilterFlashConfigSet
	mpiFilterGainGet
	mpiFilterGainSet
	mpiFilterGainIndexGet
	mpiFilterGainIndexSet
	mpiFilterMemory
	mpiFilterMemoryGet
	mpiFilterMemorySet
	mpiFilterAxisMapGet
	mpiFilterAxisMapSet
	mpiFilterControl
	mpiFilterMotorMapGet
	mpiFilterMotorMapSet
	mpiFilterNumber
	mpiFilterIntergratorReset
	meiFilterPostfilterGet
	meiFilterPostfilterSet
	meiFilterPostfilterSectionGet
	meiFilterPostfilterSectionSet

	Data Types
	MPIFilterConfig / MEIFilterConfig
	MPIFilterCoeff
	MEIFilterForm
	MPIFilterGain
	MEIFilterGainIndex
	MEIFilterGainPID
	MEIFilterGainPIV
	MEIFilterGainPIDCoeff
	MEIFilterGainPIVCoeff
	MEIFilterGainTypePID
	MEIFilterGainTypePIV
	MPIFilterMessage
	MEIFilterType
	MEIPostfilterSection

	Constants
	MEIMaxBiQuadSections
	MPIFilterCoeffCOUNT_MAX
	MPIFilterGainCOUNT_MAX

	Topics
	High / Low Output Limits (MEIFilterGainPID and PIV)
	Post Filter Theory

