
Event Objects

Event Objects
Introduction

An Event object contains information about an asynchronous event. Typically, events
are generated by the controller, but in some special cases it is possible to generate
events from the host computer.

The Event object is retrieved through the EventMgr, via the Notify object. The Event
object contains data about the type of event, its source, and other information. The user
Event fields can be configured to collect data at the time when the event occurs in the
controller.

| Error Messages |

Methods

Configuration and Information Methods
 mpiEventStatusGet Get Event status

 mpiEventStatusSet Set Event status

 mpiEventTypeName Get Event type name

Data Types

 MPIEventMessage

 MEIEventNotifyData

 MPIEventStatus

 MEIEventStatusInfo

 MPIEventType / MEIEventType

Constants

 MPIEventStatusINFO_COUNT_MAX defines the size of the MPIEventStatus.info[] array.

file:///C|/htmlhelp/Software-MPI/docs/Event/evt_out.htm [7/27/2005 11:51:25 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_table.htm#event

mpiEventStatusGet

mpiEventStatusGet

Declaration

 long mpiEventStatusGet(MPIEvent event,

 MPIEventStatus *status)

 Required Header: stdmpi.h

Description

mpiEventStatusGet gets the status of an Event object (event) and writes it into the
structure pointed to by status. Event status includes the event type, type-specific
codes and the event source.

Return Values

MPIMessageOK

Sample Code

 /* Prototype for logging function */
void logToFile(const char*);

MPIEventStatus eventStatus;
long returnValue;

/* Wait for motion event */
returnValue =
 mpiNotifyEventWait(notify,
 &eventStatus,
 MPIWaitFOREVER);
msgCHECK(returnValue);

/* Log event */
logToFile(mpiEventTypeName(eventStatus->type));

See Also

mpiEventStatusSet | meiEventStatusInfo | MPIEventType

EventLog.c

file:///C|/htmlhelp/Software-MPI/docs/Event/Method/stsget1.htm (1 of 2) [7/27/2005 11:51:25 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0
file:///C|/htmlhelp/Software-MPI/apps/c_out/EventLog.c.html

mpiEventStatusSet

mpiEventStatusSet

Declaration

 long mpiEventStatusSet(MPIEvent event,

 MPIEventStatus *status)

 Required Header: stdmpi.h

Description

mpiEventStatusSet sets (writes) the status of event using data from the structure
pointed to by status. Event status includes the event type, type-specific codes and
the event source.

Return Values

MPIMessageOK

Sample Code

 /* Prototype for logging function */
void logToFile(const char*);

MPIEventStatus eventStatus;
long returnValue;

/* Wait for motion event */
returnValue =
 mpiNotifyEventWait(notify,
 &eventStatus,
 MPIWaitFOREVER);
msgCHECK(returnValue);

/* Log event */
logToFile(mpiEventTypeName(eventStatus->type));

See Also

mpiEventStatusGet | meiEventStatusInfo | MPIEventType

EventLog.c

file:///C|/htmlhelp/Software-MPI/docs/Event/Method/stsset1.htm (1 of 2) [7/27/2005 11:51:26 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0
file:///C|/htmlhelp/Software-MPI/apps/c_out/EventLog.c.html

mpiEventTypeName

mpiEventTypeName

Declaration

 const char* mpiEventTypeName(MPIEventType eventType);

 Required Header: stdmpi.h
Change History: Added in the 03.03.00

Description

mpiEventTypeName returns a text description for MPI events. mpiEventTypeName
should be called when a text description of the event type is needed.

Return Values

"Unknown Event" if EventTypeName cannot identify eventType.

pointer to Event Type Name if EventTypeName can identify eventType.

Sample Code

 /* Prototype for logging function */
void logToFile(const char*);

MPIEventStatus eventStatus;
long returnValue;

/* Wait for motion event */
returnValue =
 mpiNotifyEventWait(notify,
 &eventStatus,
 MPIWaitFOREVER);
msgCHECK(returnValue);

/* Log event */
logToFile(mpiEventTypeName(eventStatus->type));

See Also

MPIEventType

file:///C|/htmlhelp/Software-MPI/docs/Event/Method/tynm1.htm (1 of 2) [7/27/2005 11:51:27 AM]

MPIEventMessage

MPIEventMessage

Definition

typedef enum {
 MPIEventMessageEVENT_INVALID,
} MPIEventMessage;

Description

MPIEventMessage is an enumeration of Event error messages that can be returned by
the MPI library.

MPIEventMessageEVENT_INVALID

The event type is not valid. This message code is returned by mpiEventStatusSet(...) if the event type
is not a member of the MPIEventType or MEIEventType enumerations.

See Also

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/mes1.htm [7/27/2005 11:51:27 AM]

MEIEventNotifyData

MEIEventNotifyData

Definition

 typedef struct MEIEventNotifyData {
 void *address[MEIXmpSignalUserData];
} MEIEventNotifyData;

Description

The address of an MEIEventNotifyData structure is passed as the third (void
*external) argument to mpiObjectEventNotifyGet/Set(...)†.

The address array contains host-based XMP addresses, the contents of which are
returned in MEIEventStatusInfo{}.data.

† Object represents an MPI object like Axis or Motion. Therefore,
mpiObjectEventNotifyGet/Set(...) represents functions like mpiAxisEventNotifyGet(...)
and mpiAxisEventNotifySet(...).

See Also

MEIEventStatusInfo

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/nfydta2.htm [7/27/2005 11:51:28 AM]

MPIEventStatus

MPIEventStatus

Definition

 typedef struct MPIEventStatus {
 MPIEventType type;

 void *source;
 long info[MPIEventStatusINFO_COUNT_MAX];

} MPIEventStatus;

Description

MPIEventStatus holds information about a particular event that was generated by the
XMP.

type identifies the type of event that was generated.

*source identifies what the source of the event was. source will either be a handle to an MPI
object or a host pointer. Use mpiObjectModuleId() to identify what source points to.

info Contains information on what generated the event and the conditions under which it
was generated. MEIEventStatusInfo simplifies decoding this array. Sample code is
shown on the MEIEventStatusInfo page.

See Also

mpiObjectModuleId | MPIEventType | MPIEventMgr | MPINotify | MEIEventStatusInfo
| MPIEventStatusINFO_COUNT_MAX

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/sts1.htm [7/27/2005 11:51:25 AM]

file:///C|/htmlhelp/Software-MPI/docs/Object/Method/mdlid1.htm
file:///C|/htmlhelp/Software-MPI/docs/EventMgr/evtmgr_out.htm
file:///C|/htmlhelp/Software-MPI/docs/Notify/nfy_out.htm

MEIEventStatusInfo

MEIEventStatusInfo

Definition

 typedef struct MEIEventStatusInfo {
 union {
 MPIHandle handle; /* generic */
 MPIAxis axis; /* MEIEventTypeAXIS_FIRST ...

 MEIEventTypeAXIS_LAST - 1 */
 long node; /* MEIEventTypeCAN_FIRST...
 MEIEventTypeCAN_LAST - 1 */
 long number; /* MPIEventTypeMOTION MPIEventTypeMOTOR_FIRST...
 MPIEventTypeMOTOR_LAST - 1

 MEIEventTypeMOTOR_FIRST ...
 MEIEventTypeMOTOR_LAST - 1 */
 long value; /* MPIEventTypeEXTERNAL */
 } type;

 MEIXmpSignalID signalID;

 /* Contents of addresses specified by MEIEventNotifyData{} */

 union {
 long sampleCounter;
 struct {
 long sampleCounter;
 } motion;
 struct {
 long sampleCounter;
 long actualPosition;
 } axis;
 struct {
 /* Data associated with the CAN event. */
 long data[4];
 } can;
 struct {
 long sampleCounter;
 long encoderPosition;
 } motor;
 long word[MEIXmpSignalUserData];
 } data;
} MEIEventStatusInfo;

Description

MEIEventStatusInfo is an information structure that tells the XMP what the data in
MPIEventStatus.info holds.

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/stsinf2.htm (1 of 3) [7/27/2005 11:51:26 AM]

file:///C|/htmlhelp/Software-MPI/docs/Axis/ax_out.htm

MEIEventStatusInfo

type A union that specifies the object handle, motion number, or
external ID value that generated the event

type.handle A generic object handle. Used by MPIRecorder and MPIMotor
events

type.axis An axis object handle. Used by MPIAxis events

type.node The CAN Node number of the MEICan object that generated the
event.

type.number The motion number of the MPIMotion object that generated the
event

type.value An ID value used to identify what external source or
MPISequence event was generated

signalID Specifies what type of object actually generated the event

data A union that contains extra data about the event that was
generated

data.sampleCounter The value of the sampleCounter when the event was generated

data.motion A union that contains extra data about the motion event that was
generated

data.motion.sampleCounter The value of the sampleCounter when the motion event was
generated

data.axis A union that contains extra data about the axis event that was
generated

data.axis.sampleCounter The value of the sampleCounter when the axis.event was
generated

data.axis.actualPosition The value of the axis' actual position when the event was
generated

data.can.data A union that contains extra data about the CAN event that was
generated.

data.motor A union that contains extra data about the motor event that was
generated

data.motor.sampleCounter The value of the sampleCounter when the motor event was
generated

data.motor.encoderPosition The value of the motor's ecoder position when the event was
generated

data.word[] The extra data about the event that was generated formatted as
an array of long values

Sample Code

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/stsinf2.htm (2 of 3) [7/27/2005 11:51:26 AM]

MEIEventStatusInfo

 MPINotify notify
 MPIEventStatus eventStatus;

 . . .

 /* Wait for event */
 returnValue =
 mpiNotifyEventWait(notify,
 &eventStatus,
 MPIWaitFOREVER);
 msgCHECK(returnValue);

 if (eventStatus.type == MPIEventTypeMOTION_DONE) {
 MEIEventStatusInfo *info;

 info = (MEIEventStatusInfo *)eventStatus.info;

 . . .
 }

See Also

MPIEventStatus | MPIAxis

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/stsinf2.htm (3 of 3) [7/27/2005 11:51:26 AM]

file:///C|/htmlhelp/Software-MPI/docs/Axis/ax_out.htm

MPIEventType / MEIEventType

MPIEventType / MEIEventType

Definition: MPIEventType

typedef enum {
 MPIEventTypeINVALID,

 MPIEventTypeNONE, /* 0 */

 /* Motor events */
 MPIEventTypeAMP_FAULT, /* 1 */
 MPIEventTypeHOME, /* 2 */
 MPIEventTypeLIMIT_ERROR, /* 3 */
 MPIEventTypeLIMIT_HW_NEG, /* 4 */
 MPIEventTypeLIMIT_HW_POS, /* 5 */
 MPIEventTypeLIMIT_SW_NEG, /* 6 */
 MPIEventTypeLIMIT_SW_POS, /* 7 */
 MPIEventTypeENCODER_FAULT, /* 8 */
 MPIEventTypeAMP_WARNING, /* 9 */

 /* Motion events */
 MPIEventTypeMOTION_DONE, /* 10 */
 MPIEventTypeMOTION_AT_VELOCITY, /* 11 */

 /* Recorder events */
 MPIEventTypeRECORDER_HIGH, /* 12 */
 MPIEventTypeRECORDER_FULL, /* 13 */
 MPIEventTypeRECORDER_DONE, /* 14 */

 /* External events */
 MPIEventTypeEXTERNAL, /* 15 */
} MPIEventType;

Description

MPIEventType is used by the MPIEventMask macros to help generate event masks.

MPIEventTypeNONE This event type indicates no event was generated.

MPIEventTypeAMP_FAULT This event type indicates an Amp Fault event was
generated from a Motor object.

MPIEventTypeHOME This event type indicates a Home event was generated
from a Motor object.

MPIEventTypeLIMIT_ERROR This event type indicates a position Error Limit was
generated from a Motor object.

MPIEventTypeLIMIT_HW_NEG This event type indicates a Negative Hardware Limit
event was generated from a Motor object.

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/ty3.htm (1 of 9) [7/27/2005 11:51:27 AM]

MPIEventType / MEIEventType

MPIEventTypeLIMIT_HW_POS This event type indicates a Positive Hardware Limit
event was generated from a Motor object.

MPIEventTypeLIMIT_SW_NEG This event type indicates a Negative Software Limit
event was generated from a Motor object.

MPIEventTypeLIMIT_SW_POS This event type indicates a Positive Software Limit
event was generated from a Motor object.

MPIEventTypeENCODER_FAULT This event type indicates an Encoder Fault event was
generated from a Motor object. See Use of
MPIEventTypeENCODER_FAULT.

MPIEventTypeAMP_WARNING This event type indicates an Amp Warning event was
generated from a Motor object.

MPIEventTypeMOTION_DONE This event type indicates a Motion Done event was
generated from a Motion Supervisor object.

MPIEventTypeMOTION_AT_VELOCITY This event type indicates an At Velocity event was
generated from a Motion Supervisor object.

MPIEventTypeRECORDER_HIGH This event type indicates that the controller's recorded
data exceeded the buffer's high limit.

MPIEventTypeRECORDER_FULL This event type indicates that the controller's recorded
data has filled the buffer.

MPIEventTypeRECORDER_DONE This event type indicates that the controller has
recorded the number of requested data records.

MPIEventTypeEXTERNAL This event type indicates an External event was
generated from an external source.

Definition: MEIEventType

typedef enum {

 /* System events */
 MEIEventTypeCONTROL_HOST_PROCESS_TIME_EXCEEDED =
 MPIEventTypeLAST, /* 16 */
 /* Controller events */
 MEIEventTypeCONTROL_HOST_PROCESS_TIME_EXCEEDED,
 MEIEventTypeCONTROL_FAN,

 /* Motor events */
 MEIEventTypeLIMIT_USER0,
 MEIEventTypeLIMIT_USER1,
 MEIEventTypeLIMIT_USER2,
 MEIEventTypeLIMIT_USER3,
 MEIEventTypeLIMIT_USER4,
 MEIEventTypeLIMIT_USER5,
 MEIEventTypeLIMIT_USER6,

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/ty3.htm (2 of 9) [7/27/2005 11:51:27 AM]

MPIEventType / MEIEventType

 MEIEventTypeLIMIT_USER7,
 MEIEventTypeLIMIT_USER8,
 MEIEventTypeLIMIT_USER9,
 MEIEventTypeLIMIT_USER10,
 MEIEventTypeLIMIT_USER11,
 MEIEventTypeLIMIT_USER12,
 MEIEventTypeLIMIT_USER13,
 MEIEventTypeLIMIT_USER14,
 MEIEventTypeLIMIT_USER15,

 /* Motion events */
 MEIEventTypeMOTION_OUT_OF_FRAMES,

 /* Axis events */
 MEIEventTypeIN_POSITION_COARSE,
 MEIEventTypeIN_POSITION_FINE,
 MEIEventTypeSETTLED
 MEIEventTypeAT_TARGET,
 MEIEventTypeFRAME,

 /* SynqNet events */
 MEIEventTypeSYNQNET_DEAD,
 MEIEventTypeSYNQNET_RX_FAILURE,
 MEIEventTypeSYNQNET_TX_FAILURE,
 MEIEventTypeSYNQNET_NODE_FAILURE,
 MEIEventTypeSYNQNET_RECOVERY,

 /* SqNode events */
 MEIEventTypeSQNODE_IO_ABORT,
 MEIEventTypeSQNODE_NODE_DISABLE,
 MEIEventTypeSQNODE_NODE_ALARM,
 MEIEventTypeSQNODE_ANALOG_POWER_FAULT,
 MEIEventTypeSQNODE_USER_FAULT,
 MEIEventTypeSQNODE_NODE_FAILURE,
 MEIEventTypeSQNODE_IO_FAULT,

 /* CAN events */
 MEIEventTypeCAN_BUS_STATE,
 MEIEventTypeCAN_RECEIVE_OVERRUN,
 MEIEventTypeCAN_EMERGENGY,
 MEIEventTypeCAN_NODE_BOOT,
 MEIEventTypeCAN_HEALTH,
 MEIEventTypeCAN_DIGITAL_INPUT,
 MEIEventTypeCAN_ANALOG_INPUT,

} MEIEventType;

 Change History: Modified in the 03.03.00

Description

MEIEventType is used by the MPIEventMask macros to help generate event masks.

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/ty3.htm (3 of 9) [7/27/2005 11:51:27 AM]

MPIEventType / MEIEventType

MEIEventTypeCONTROL_HOST_
PROCESS_TIME_EXCEEDED

This is an event that occurs if the
xmp.SystemData.SyncInterrupt.ProcessFlag
is set when SynqNet data is transmitted at
the end of the firmware’s foreground cycle.
If the user is using the SynqInterrupt
feature and sets the ProcessFlag at the
beginning of the foreground cycle, the
firmware checks to see if the user cleared
the ProcessFlag by the time SynqNet data
is transmitted. If the ProcessFlag has not
been cleared, the event occurs.

MEIEventTypeCONTROL_HOST_PROCESS_TIME_EXCEEDED This is an event that can occur when the on-
board fan controller detects an error
(overheating, fan failure, etc…).

NOTE: This is for the ZMP only and will
not occur on an XMP.

MEIEventTypeCONTROL_FAN This is an event that can occur when the on-
board fan controller detects an error
(overheating, fan failure, etc…).

NOTE: This is for the ZMP only and will
not occur on an XMP.

MEIEventTypeLIMIT_USER0 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 0.

MEIEventTypeLIMIT_USER1 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 1.

MEIEventTypeLIMIT_USER2 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 2.

MEIEventTypeLIMIT_USER3 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 3.

MEIEventTypeLIMIT_USER4 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 4.

MEIEventTypeLIMIT_USER5 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 5.

MEIEventTypeLIMIT_USER6 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 6.

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/ty3.htm (4 of 9) [7/27/2005 11:51:27 AM]

MPIEventType / MEIEventType

MEIEventTypeLIMIT_USER7 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 7.

MEIEventTypeLIMIT_USER8 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 8.

MEIEventTypeLIMIT_USER9 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 9.

MEIEventTypeLIMIT_USER10 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 10.

MEIEventTypeLIMIT_USER11 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 11.

MEIEventTypeLIMIT_USER12 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 12.

MEIEventTypeLIMIT_USER13 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 13.

MEIEventTypeLIMIT_USER14 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 14.

MEIEventTypeLIMIT_USER15 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 15.

MEIEventTypeMOTION_OUT_OF_FRAMES This event type indicates a Motion Done
event was generated from a Motion
Supervisor object.

MEIEventTypeIN_POSITION_COARSE This event type indicates an In Coarse
Position event was generated from an Axis
object. See Axis Tolerances and Related
Events and MPIAxisInPosition.

MEIEventTypeIN_POSITION_FINE This event type indicates that an In Fine
Position event was generated from an Axis
object. See Axis Tolerances and Related
Events and MPIAxisInPosition.

MEIEventTypeSETTLED Equivalent to
MEIEventTypeIN_POSITION_FINE.

MEIEventTypeAT_TARGET Reserved Frame Event.

MEIEventTypeFRAME This event type is currently not supported
and is reserved for future use.

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/ty3.htm (5 of 9) [7/27/2005 11:51:27 AM]

file:///C|/htmlhelp/Software-MPI/topics/ax_tol_mtn_rel_evt.htm#5
file:///C|/htmlhelp/Software-MPI/topics/ax_tol_mtn_rel_evt.htm#5
file:///C|/htmlhelp/Software-MPI/docs/Axis/DataType/inpos1.htm
file:///C|/htmlhelp/Software-MPI/topics/ax_tol_mtn_rel_evt.htm#5
file:///C|/htmlhelp/Software-MPI/topics/ax_tol_mtn_rel_evt.htm#5
file:///C|/htmlhelp/Software-MPI/docs/Axis/DataType/inpos1.htm

MPIEventType / MEIEventType

MEIEventTypeSYNQNET_DEAD The SynqNet network was shutdown due to
a communication failure. This status/event
occurs when the controller fails to
read/write data to the SynqNet network
interface from an RX_FAILURE or a
TX_FAILURE. To recover from a DEAD
event, the network must be shutdown and
reinitialized. SYNQNET_DEAD is latched
by the controller, use
meiSynqNetEventReset(...) to clear the
status/event bit.

MEIEventTypeSYNQNET_RX_FAILURE SynqNet network data receive failure.
Generated when the controller fails to
receive the packet data buffer (Rincon
DMA to internal memory) in two
successive controller samples. A
SYNQNET_RX_FAILURE is most likely
caused by an incorrect RX_COPY_TIMER
value (internal) or a timing problem. To
recover from an RX_FAILURE event, the
network must be shutdown and
reinitialized. SYNQNET_RX_FAILURE is
latched by the controller, use
meiSynqNetEventReset(...) to clear the
status/event bit.

MEIEventTypeSYNQNET_TX_FAILURE SynqNet network data transmission failure.
Generated when the controller fails to
transmit the packet data buffer in two
successive controller samples. This occurs
when the maximum foreground time
exceeds the Tx time percentage of the
controller's sample period. The default Tx
time value is 75% of the controller's sample
period. To correct Tx failures, either
increase the Tx time or decrease the
controller's sample rate. To recover from a
TX_FAILURE event, the network must be
shutdown and reinitialized.
SYNQNET_TX_FAILURE is latched by
the controller, use
meiSynqNetEventReset(...) to clear the
status/event bit.

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/ty3.htm (6 of 9) [7/27/2005 11:51:27 AM]

file:///C|/htmlhelp/Software-MPI/docs/Synqnet/Method/evtrst2.htm
file:///C|/htmlhelp/Software-MPI/docs/Synqnet/Method/evtrst2.htm
file:///C|/htmlhelp/Software-MPI/docs/Synqnet/Method/evtrst2.htm

MPIEventType / MEIEventType

MEIEventTypeSYNQNET_NODE_FAILURE SynqNet node failure. Generated when any
node's upstream or downstream packet
error rate counters exceed the failure limit.
The failure limits are configured with
meiSqNodeConfigSet(...). Use
meiSynqNetStatus(...) to read the
nodeFailedMask to identify the failed
nodes. Also, a
SQNODE_NODE_FAILURE will be
generated for each node that fails.
SYNQNET_NODE_FAILURE is latched
by the controller, use
meiSynqNetEventReset(...) to clear the
status/event bit. To recover from a node
failure, the network must be shutdown and
reinitialized.
See Also: SynqNet Node Failure

MEIEventTypeSYNQNET_RECOVERY SynqNet fault recovery. Generated when
any node's upstream or downstream packet
error rate counters exceed the fault limit
and the data traffic is redirected around the
fault. The fault limits are configurable via
meiSqNodeConfigSet(...).
SYNQNET_RECOVERY is latched by the
controller. Use meiSynqNetEventReset(...)
to clear the status/event bit.

MEIEventTypeSQNODE_IO_ABORT SynqNet node I/O abort. Generated when
the node I/O Abort is activated. When the
I/O Abort is triggered, the node's outputs
are disabled (set to the power-on condition).
The node I/O Abort can be configured to
trigger when either a Synq Lost occurs,
Node Disable is active, a Power Fault
occurs, or a User Fault is triggered. See
MEISqNodeConfigIoAbort{.} for more
details.

MEIEventTypeSQNODE_NODE_DISABLE SynqNet node's Node Disable input is
activated. Generated when the Node
Disable input signal transitions from
inactive to active. This signal is latched in
hardware. Use meiSqNodeEventReset(...)
to clear the status/event and the hardware
latch.

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/ty3.htm (7 of 9) [7/27/2005 11:51:27 AM]

file:///C|/htmlhelp/Software-MPI/docs/Synqnet/Method/sts2.htm
file:///C|/htmlhelp/Software-MPI/docs/Synqnet/Method/evtrst2.htm
file:///C|/htmlhelp/Technology/SynqNet/synq_failure.htm
file:///C|/htmlhelp/Software-MPI/docs/sqNode/Method/cfset2.htm
file:///C|/htmlhelp/Software-MPI/docs/Synqnet/Method/evtrst2.htm
file:///C|/htmlhelp/Software-MPI/docs/sqNode/Method/evtrst2.htm

MPIEventType / MEIEventType

MEIEventTypeSQNODE_NODE_ALARM SynqNet node analog power failure.
Generated when the node's power failure
input bit transitions from inactive to active.
The power fault circuit is node specific, but
is typically connected to an analog power
monitor. This signal is latched in hardware.
Use meiSqNodeEventReset(...) to clear the
status/event and the hardware latch.

MEIEventTypeSQNODE_ANALOG_POWER_FAULT This event occurs when the SynqNet Node
sets its Analog Power Fault bit.

MEIEventTypeSQNODE_USER_FAULT SynqNet node user fault. Generated when
the node's user configurable fault is
triggered. The user fault can be configured
to monitor any controller memory address
and compare the masked value to a
specified pattern. This signal is latched by
the controller, use
meiSqNodeEventReset(...) to clear the
status/event bit.

MEIEventTypeSQNODE_NODE_FAILURE SynqNet node failure. Generated when a
node's upstream or downstream packet
error rate counters exceed the failure limit.
The failure limits are configured with
meiSqNodeConfigSet(...).
SQNODE_NODE_FAILURE is latched by
the controller, use
meiSqNodeEventReset(...) to clear the
status/event bit. To recover from a node
failure, the network must be shutdown and
reinitialized.

MEIEventTypeSQNODE_IO_FAULT This event type can be generated by slice
I/O nodes. The event indicates that a fault
was detected when communicating with
one of the slices attached to the node.

MEIEventTypeCAN_BUS_STATE The BusState has changed. Data[0] contains
the new bus state.

MEIEventTypeCAN_RECEIVE_OVERRUN The CAN hardware detected a receive
overrun.

MEIEventTypeCAN_EMERGENGY An emergency message was received from
a node. Data[0] contains the node number.
Data[1 to 4] contains the contents of the
emergency message.

MEIEventTypeCAN_NODE_BOOT A node boot message was received from a
node. Data[0] contains the node number.

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/ty3.htm (8 of 9) [7/27/2005 11:51:27 AM]

file:///C|/htmlhelp/Software-MPI/docs/sqNode/Method/evtrst2.htm
file:///C|/htmlhelp/Software-MPI/docs/sqNode/Method/evtrst2.htm
file:///C|/htmlhelp/Software-MPI/docs/sqNode/Method/cfset2.htm
file:///C|/htmlhelp/Software-MPI/docs/sqNode/Method/evtrst2.htm

MPIEventType / MEIEventType

MEIEventTypeCAN_HEALTH The health of a node has changed. Data[0]
contains the node number. Data[1] contains
the new node health.

MEIEventTypeCAN_DIGITAL_INPUT A digital input event was received from a
node. Data[0] contains the node number.
Data[1 to 4] contains the new input state.

MEIEventTypeCAN_ANALOG_INPUT An analog input event was received from a
node. Data[0] contains the node number.
Data[1 to 4] contains the new input state.

See Also

MPIEventMask | MPIEventMgr | MPINotify | MPIEventStatus | meiSynqNetEventReset | Error
Limit and Limit Switch Errors

Use of MPIEventTypeENCODER_FAULT

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/ty3.htm (9 of 9) [7/27/2005 11:51:27 AM]

file:///C|/htmlhelp/Software-MPI/docs/EventMask/evtmsk_out.htm
file:///C|/htmlhelp/Software-MPI/docs/EventMgr/evtmgr_out.htm
file:///C|/htmlhelp/Software-MPI/docs/Notify/nfy_out.htm
file:///C|/htmlhelp/Software-MPI/docs/Synqnet/Method/evtrst2.htm
file:///C|/htmlhelp/Software-MPI/topics/error_limits.htm
file:///C|/htmlhelp/Software-MPI/topics/error_limits.htm

MPIEventStatusINFO_COUNT_MAX

MPIEventStatusINFO_COUNT_MAX

Definition

 #define MPIEventStatusINFO_COUNT_MAX (16)

Description

MEIEventStatusINFO_COUNT_MAX defines the size of the MPIEventStatus.info[]
array.

See Also

MPIEventStatus | MPIEventMgr | MPINotify

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/stsinfcntmax4.htm [7/27/2005 11:51:28 AM]

file:///C|/htmlhelp/Software-MPI/docs/EventMgr/evtmgr_out.htm
file:///C|/htmlhelp/Software-MPI/docs/Notify/nfy_out.htm

Use of MPIEventTypeENCODER_FAULT

Use of MPIEventTypeENCODER_FAULT
This event type is used to detect three types of encoder faults:

● Broken wire errors
● Illegal state errors
● Absolute encoder initialization errors

❍ Timeout errors
❍ Protocol errors

Broken wire errors are detected for either incremental or absolute encoders
whenever both differential inputs of any encoder receiver (A, B, or Index) are at the
same voltage level (i. e., whenever one or both inputs is disconnected from the
encoders differential transmitter). The EncoderTermination configuration of the
encoder input must be TRUE for correct detection of broken wires.

Illegal state errors occur whenever transitions are seen on both A and B phases of
an encoder input at the same time (e.g. noise spikes).

There are two types of absolute encoder initialization errors: Timeout errors and
Protocol errors.

Timeout errors occur when an absolute encoder does not transmit absolute encoder
data within the timeout period starting at the transition of the interrogation line (SEN
line).

Protocol errors are detected when serial absolute data is sent during the timeout, but
the data cannot be interpreted by the XMP. Both error types result in an
ENCODER_FAULT event.

Return to MPIEventType

file:///C|/htmlhelp/Software-MPI/docs/Event/Topics/note_evtty.htm [7/27/2005 11:51:28 AM]

	Event Objects
	Methods
	mpiEventStatusGet
	mpiEventStatusSet
	mpiEventTypeName

	Data Types
	MPIEventMessage
	MEIEventNotifyData
	MPIEventStatus
	MEIEventStatusInfo
	MPIEventType / MEIEventType

	Constants
	MPIEventStatusINFO_COUNT_MAX

	Topics
	Use of MPIEventTypeENCODER_FAULT

