CAN Objects

CAN Objects

Introduction

The CAN object allow the user easy access to the I/O nodes connected to a controller's
CANOpen interface.

If a controller does not support the CANOpen interface, the meiCanValidate function will
return MEICanMessagelINTERFACE_NOT_FOUND.

The CAN system uses the MEICanConfig and MEICanNodeConfig structures to hold all
of the user configurable quantities. These structures are stored in non-volatile flash
memory. When the XMP is released from reset (normally soon after the host powers up
or after a call to mpiControlReset), the CAN Processor will initialize itself with data from
MEICanConfig and MEICanNodeConfig before starting to scanning the network for
nodes.

The functions meiCanConfigGet, meiCanConfigSet, meiCanNodeConfigGet and
meiCanNodeConfigSet allow the user to modify the current configuration of the CAN
Processor. meiCanFlashConfigGet and meiCanFlashConfigSet functions allow the user
to modify the configuration that the CAN system will use after the next reset.

The MEICanVersion structure returns the version information about the CAN system on
a controller.

After the CAN processor has finished scanning the network, it will have completed the
MEICanNodelnfo structures for each node. The user can call the meiCanNodelnfo

function to query this initial configuration for each of the nodes.

Bit Rate | Transmission Types | Bus State | CAN Hardware | Node Health |
Emergency Messages | Handling Events | CAN Hardware on the XMP | CAN Analog
Values

| Error Messages |

Methods

Create, Delete, Validate Methods
meiCanCr eate Create Can object
meiCanDelete Delete Can object
meiCanValidate Validate Can object

file://IC|/htmlhelp/Software-MPI/docs/CAN/can_out.htm (1 of 3) [7/27/2005 10:51:53 AM]

file:///C|/htmlhelp/Software-MPI/topics/can_io_overview.htm
file:///C|/htmlhelp/Software-MPI/topics/can_io_overview.htm
file:///C|/htmlhelp/Software-MPI/docs/error_table.htm#can

CAN Objects

Configuration and Information Methods

meiCanConfigGet
meiCanConfigSet
meiCanFlashConfigGet
meiCanFlashConfigSet
meiCanStatus
meiCanVersion
meiCanCommand
meiCanNodeConfigGet

mei CanNodeConfigSet
mei CanNodeFlashConfigGet

mei CanNodeFlashConfigSet
meiCanNodeStatus

mei CanNodel nfo

I/O Methods
meiCanNodeAnalogln
meiCanNodeAnalogOutGet
mei CanNodeAnalogOut Set
meiCanNodeDigitalln
meiCanNodeDigitalOutGet
meiCanNodeDigitalOut Set

Event Methods

mei CanEventNotifyGet
mei CanEventNotifySet

Firmware Methods
mei CanFir mwar eDownload

mei CanFirmwar eErase

mei CanFir mwar eUpload

Memory Methods
meiCanM emory

mei CanM emor yGet
mei CanM emor ySet

Action Methods

meiCanl nit

Relational Methods

Get Can's configuration

Set Can's configuration

Get Can'sflash configuration

Set Can's flash configuration

Get status of the CAN controller.

Returns the version information about a controller's CAN system.

Get Can'sflash configuration

Return a copy of the current configuration

Update the current configuration that the specified CAN node is using.
Get the flash configuration of the Can node

Set the flash configuration of the Can node

Get the instantaneous state of the local CAN interface.

Return the node information after the XM P finishes scanning the network.

Get event mask of events for which host notification has been requested
Set event mask of events for which host notification will be requested

Downloads firmware to the Can controller
Erases firmware on the Can controller
Uploads firmware from the Can controller

Get address to Can's memory
Copy data from Can memory to application memory
Copy data from application memory to Recorder memory

file://IC|/htmlhelp/Software-MPI/docs/CAN/can_out.htm (2 of 3) [7/27/2005 10:51:53 AM]

CAN Objects

meiCanControl
meiCanNumber

Data Types

MEICanBitRate
MEICanBusState
MEICanCallback
MEICanCommand

MEICanCommandType
MEICanConfig

MEICanHealthType
MEICanM essage

MEICanNodeConfig
MEICanNodel nfo
MEICanNodel nfoProductCode
MEICanNodel nfoVendor
MEICanNodeStatus
MEICanNodeType
MEICanNM T State
MEICanStatus

MEICanTransmissionType

MEICanVersion

Constants

MEICanNetwor kM AX

file://IC|/htmlhelp/Software-MPI/docs/CAN/can_out.htm (3 of 3) [7/27/2005 10:51:53 AM]

meiCanConfigGet

meiCanConfigGet

Declaration

| ong nei CanConfi gCGet (VEI Can can,
MElI CanConf i g* config);

Required Header: stdmei.h
Description

meiCanConfigGet returns a copy of the current configuration of the CAN controller.

can a handle to the CAN object

config apointer to the CAN configuration structure that will be filled in by this function..

Return Values

M Pl M essageOK

See Also

meiCanConfigSet

file://IC|/htmlhelp/Software-MPI/docs/CAN/Method/cfget2.htm [7/27/2005 10:51:55 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanConfigSet

meiCanConfigSet

Declaration

| ong nei CanConfi gSet (VEl Can can,
MElI CanConf i g* config);

Required Header: stdmei.h
Description

meiCanConfigSet updates the current configuration of the CAN controller.

can ahandle to the CAN object

config a pointer to the CAN configuration structure containing the new configuration.

Return Values

M PIM essageOK

See Also

meiCanConfigGet

file:///IC|/htmlhelp/Software-MPI/docs/CAN/Method/cfset2.htm [7/27/2005 10:51:55 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanNodeConfigGet

meiCanNodeConfigGet

Declaration

| ong nei CanNodeConfi gGet (MEI Can can,

| ong node,
MEI CanNodeConf i g* nodeConfi g);

Required Header: stdmei.h

Description

meiCanNodeConfigGet returns a copy of the current configuration that the specified
CAN node is using.

can ahandle to the CAN object
node the node number of the CANOpen node
nodeConfig a pointer to the CAN node configuration structure that will befilled in by this
function.
Return Values
M PIM essageOK
See Also

meiCanNodeConfigSet | meiCanConfigGet | meiCanConfigSet

file://IC|/htmlhelp/Software-MPI/docs/CAN/Method/ndcfget2.htm [7/27/2005 10:51:56 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanNodeConfigSet

meiCanNodeConfigSet

Declaration

| ong nei CanNodeConfi gSet (MEI Can can,

| ong node,
MEI CanNodeConf i g* nodeConfi g);

Required Header: stdmei.h

Description

meiCanNodeConfigSet updates the current configuration that the specified CAN
node is using.

can ahandle to the CAN object
node the node number of the CANOpen node
nodeConfig a pointer to the CAN node configuration structure containing the new

configuration.

Return Values

M PIM essageOK

See Also

meiCanNodeConfigGet | meiCanConfigGet | meiCanConfigSet

file://IC|/htmlhelp/Software-MPI/docs/CAN/Method/ndcfset2.htm [7/27/2005 10:51:56 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanFlashConfigGet

meiCanFlashConfigGet

Declaration

| ong nei CanFl ashConfi gGet (MEI Can can,

voi d* fl ash,
MEI CanConf i g* config);

Required Header: stdmei.h

Description

meiCanFlashConfigGet returns a copy of the current flash configuration that the
CAN controller is using.

can handle to the CAN object
flash normally NULL
config a pointer to the CAN configuration structure that will befilled in by this
function.
Return Values
M PIM essageOK
See Also
meiCanFlashConfigSet

file:///C|/htmlhelp/Software-MPIl/docs/CAN/Method/flacfget2.htm [7/27/2005 10:51:56 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanFlashConfigSet

meiCanFlashConfigSet

Declaration

| ong nei CanFl ashConfi gSet (MEl Can can,

voi d* fl ash,
MEI CanConf i g* config);

Required Header: stdmei.h

Description

meiCanFlashConfigSet updates the current flash configuration that the CAN
controller is using.

can handle to the CAN object
flash normally NULL
config a pointer to the CAN configuration structure that will befilled in by this
function.
Return Values
M PIM essageOK
See Also
meiCanFlashConfigGet

file:///C|/htmlhelp/Software-MPIl/docs/CAN/Method/flacfset2.htm [7/27/2005 10:51:56 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanNodel nfo

meiCanNodelnfo

Declaration

| ong nei CanNodel nf o(MEI Can can,

| ong node,
VElI CanNodel nf o* nodel nf o) ;

Required Header: stdmei.h

Description

meiCanNodelnfo returns the node information for the specified node on the CAN
network that was generated when the XMP/ZMP finished scanning the network.

can handle to the CAN object
node the filename of the CAN controller firmware (*.out file).
nodel nfo a pointer to where this function will put the node information.
Return Values
M PIM essageOK

See Also

meiCanNodeStatus | meiCanStatus

file:///IC|/htmlhelp/Software-MPI/docs/CAN/Method/ndinf2.htm [7/27/2005 10:51:58 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanNodeStatus

meiCanNodeStatus

Declaration

| ong nei CanNodeSt at us(MEI Can can,

| ong node,
MEI CanNodeSt at us* nodeSt at us) ;

Required Header: stdmei.h
Description

meiCanNodeStatus gets the instantaneous state of the specified node on the CAN
network.

can handle to the CAN object
node the node number of the CANOpen node.

nodeStatus a pointer to where this function will put the node status.

Return Values

M PIM essageOK

See Also

meiCanNodelnfo | meiCanStatus

file://IC|/htmlhelp/Software-MPI/docs/CAN/Method/ndsts2.htm [7/27/2005 10:51:58 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanStatus

meiCanStatus

Declaration

| ong nei CanSt at us(MEl Can can,
MEI CanSt at us* st at us) ;

Required Header: stdmei.h

Description

meiCanStatus gets the instantaneous state of the local CAN interface to the CAN
network.

can handle to the CAN object
node the node number of the CANOpen node.

status apointer to where this function will put the status.

Return Values

M PIM essageOK

See Also

meiCanNodelnfo | meiCanNodeStatus

file:/lIC|/htmlhelp/Software-MPI/docs/CAN/Method/sts2.htm [7/27/2005 10:51:58 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanEventNotifyGet

meiCanEventNotifyGet

Declaration
| ong nei CanEvent Not i f yGet (MVEI Can can,
MPI Event Mask *event Mask,
voi d *external);

Required Header: stdmei.h

Description

meiCanEventNotifyGet gets the current CAN event mask.

can handle to the CAN object.
*eventM ask a pointer to the MPI event mask that will befilled in by this function.
*external external points to an implementation specific structure. Since there is currently

no implementation specific data, NULL should be used.

Return Values

M PIM essageOK

See Also

meiCanNotifySet

file:///C|/htmlhelp/Software-MPIl/docs/CAN/Method/evtnfyget2.htm [7/27/2005 10:52:00 AM]

file:///C|/htmlhelp/Software-MPI/docs/EventMask/DataType/msk1.htm
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanEventNotifySet

meiCanEventNotifySet

Declaration
| ong nei CanEvent Not i ySet (MEI Can can,
MPI Event Mask event Mask,
voi d *external);

Required Header: stdmei.h

Description

meiCanEventNotifySet updates the current CAN event mask.

can handle to the CAN object.
eventM ask a pointer to the new MPI event mask that will be filled in by this function.
*external external points to an implementation specific structure. Since there is currently

no implementation specific data, NULL should be used.

Return Values

M PIM essageOK

See Also

meiCanEventNotifyGet

file:///C|/htmlhelp/Software-MPIl/docs/CAN/Method/evtnfyset2.htm [7/27/2005 10:52:01 AM]

file:///C|/htmlhelp/Software-MPI/docs/EventMask/DataType/msk1.htm
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

meiCanCreate

meiCanCreate

Declaration

MEI Can nei CanCreate(MPl Control control,
| ong nunber) ;

Required Header: stdmei.h
Change History: Modified in the 03.02.00

Description

meiCanCreate creates a CAN object handle that is used subsequently to address the
CAN network on this controller. You will need a valid CAN handle to use the MPI's
CANOpen functionality.

control a handle to the controller object that contains the CAN object.

number the number of the CAN network on the specified controller. For most controllers
with asingle CAN network interface this will be zero. Network numbers are zero

based.

Return Values

handle Handle to the CAN object created or
MPIHandleVOID.

MPIHandlevVOID if the object could not be created

Sample Code
The following sample code shows the creation and destruction of a valid CAN handle.

MPI Cont rol Cont r ol Handl e;
MElI Can CANHandl e;
| ong Result;

/* Create, validate and initalise a handle to the controller. */
Cont r ol Handl e = npi Control Create(MPI Control TypeDEFAULT, NULL);

Result = npi Control Val i date(Control Handl e);
assert(Result == MPI MessageXX);

Result = npi Controllnit(Control Handl e);
assert(Result == MPI MessageX);

file:///C|/htmlhelp/Software-MPI/docs/CAN/Method/create2.htm (1 of 2) [7/27/2005 10:52:01 AM]

file:///C|/htmlhelp/Software-MPI/docs/Control/cnl_out.htm

meiCanCreate

/* Create and validate a handle to the CAN object.

CANHandl e = nei CanCreate(Control Handle, 0);
Result = nei CanVal i dat e(CANHandl e);

assert(Result == MPI MessageX);

/* Use the CAN object here */

/* Delete the CAN and Controll er objects */
Result = nei CanDel ete(CANHandl e);

assert(Result == MPI MessageXX);

Result = npi Control Del ete(Control Handl e);

assert(Result == MPI MessageX);

See Also

mpiCanDelete | mpiCanValidate

file://IC|/htmlhelp/Software-MPI/docs/CAN/Method/create2.htm (2 of 2) [7/27/2005 10:52:01 AM]

meiCanDelete

meiCanDelete

Declaration
| ong nei CanDel et e(MEI Can can);
Required Header: stdmei.h
Description

meiCanDelete deletes the specified CAN object.

can handle to the CAN object to delete.

Return Values

M PIM essageOK

Sample Code

See nei CanCreate for an exanple of how to use nei CanDel et e.

See Also

meiCanCreate | meiCanValidate

file:///IC|/htmlhelp/Software-MPI/docs/CAN/Method/delete2.htm [7/27/2005 10:52:02 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

meiCanValidate

meiCanValidate

Declaration
| ong nei CanVal i dat e(MEI Can can);
Required Header: stdmei.h

Description

meiCanValidate validates the specified CAN handle.

can handle to the CAN object

Return Values

M PIM essageOK

MPIM essageUNSUPPORTED

Sample Code

See nei CanCreate for an exanple of how to use nei CanVal i dat e.

See Also

meiCanNodelnfo | meiCanNodeStatus

file://IC|/htmlhelp/Software-MPI/docs/CAN/Method/valid2.htm [7/27/2005 10:52:02 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#10

meiCanVersion

meiCanVersion

Declaration

| ong nei CanVer si on(MVEI Can can,
MEI CanVer si on* version);

Required Header: stdmei.h
Description

meiCanVersion returns the version of the firmware being used by the CAN controller.

can handle to the CAN object
version a pointer to where this function will put the version information.
Return Values
M PIM essageOK
See Also

file://IC|/htmlhelp/Software-MPI/docs/CAN/Method/ver2.htm [7/27/2005 10:52:02 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanCommand

meiCanCommand

Declaration

| ong nei CanComand(VEI Can can,
MEI CanComand* comand) ;

Required Header: stdmei.h

Description

meiCanCommand allows a set of basic commands to be performed. The type field of
the MEICanCommand structure specifies the type of command to perform.

can a handle to the CAN object

command apointer to a structure which contains the details of the command to be issued. On
the functions return, it will contain the result of the requested command.

Return Values

M PIM essageOK

See Also

MEICanCommand

file://IC|/htmlhelp/Software-MPI/docs/CAN/Method/cmd2.htm [7/27/2005 10:52:03 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanNodeFl ashConfigGet

meiCanNodeFlashConfigGet

Declaration
| ong nei CanNodeFl ashConf i gGet (MVEI Can can,
voi d* flash,
| ong node,

MEI CanNodeConfi g* nodeConfi g);

Required Header: stdmei.h

Description

meiCanNodeFlashConfigGet returns a copy of the current flash configuration of the
CAN controller.

can ahandle to the CAN object
flash normally NULL
node the node number of the CANOpen node
nodeConfig a pointer to the CAN node configuration structure that will befilled in by this
function
Return Values
M PIM essageOK
See Also

meiCanNodeFlashConfigSet

file:///C|/htmlhelp/Software-MPIl/docs/CAN/Method/ndflacfget2.htm [7/27/2005 10:52:03 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanNodeFl ashConfigSet

meiCanNodeFlashConfigSet

Declaration
| ong nei CanNodeF| ashConf i gSet (MVEI Can can,
voi d* flash,
| ong node,

MEI CanNodeConfi g* nodeConfi g);

Required Header: stdmei.h

Description

meiCanNodeFlashConfigSet updates the current flash configuration for the node.

can ahandle to the CAN object

flash normally NULL

node the node number of the CANOpen node

nodeConfig apointer to the CAN node configuration structure containing the new

configuration.

Return Values

M PIM essageOK

See Also

meiCanNodeFlashConfigGet

file:///C|/htmlhelp/Software-MPIl/docs/CAN/Method/ndflacfset2.htm [7/27/2005 10:52:03 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

meiCanNodeAnalogin

meiCanNodeAnaloglin

Declaration
| ong nei CanNodeAnal ogl n(MEI Can can,
| ong node,
| ong channel ,
| ong *state);

Required Header: stdmei.h
Change History: Added in the 03.03.00

Description

meiCanNodeAnalogln gets the current state of an analog input on the specified CAN

node.
can handle to the CAN object
node the node number of the CANOpen node.
channel the index of the analog input.
*state apointer to where the current state of the input is written to by this function. See
CAN Analog Values.
Return Values
M PIM essageOK
Sample Code

The following code shows how to get the state of analog input 3 on node 5.

| ong anal og3;
nmei CanNodeAnal ogl n(can, 5, 3, &analog3);

See Also

meiCanNodeAnalogOutSet | meiCanNodeAnalogOutGet | CAN Analog Values

file:///C|/htmlhelp/Software-MPIl/docs/CAN/Method/ndanlgin2.htm (1 of 2) [7/27/2005 10:52:03 AM]

file:///C|/htmlhelp/Software-MPI/topics/can_io_overview.htm
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0
file:///C|/htmlhelp/Software-MPI/topics/can_io_overview.htm

mei CanNodeA nal ogOutSet

meiCanNodeAnalogOutSet

Declaration
| ong nei CanNodeAnal ogQut Set (VEl Can can,
| ong node,
| ong channel ,
| ong st at e,
| ong wait);

Required Header: stdmei.h
Change History: Added in the 03.03.00

Description

meiCanNodeAnalogOutSet changes the state of an analog output on the specified

CAN node.
can handle to the CAN object
node the node number of the CANOpen node.
channel the index of the analog output.
state the new state of the analog output. See CAN Analog Values.
wait aBoolean flag that indicates if the new output state isimmediately applied or a
wait isinserted so that any previously set output is transmitted over CAN first
before applying the new output state.
Return Values
M PI M essageOK
Sample Code

The following code shows how to change the state of analog output 3 on node 5 to
the maximum value 7FFFh.

mei CanNodeAnal ogQut Get (can, 5, 3, OxX7FFF, 1);

See Also

file:///C|/htmlhelp/Software-MPIl/docs/CAN/Method/ndanlgoutset2.htm (1 of 2) [7/27/2005 10:52:04 AM]

file:///C|/htmlhelp/Software-MPI/topics/can_io_overview.htm
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanNodeAnal ogOutSet

meiCanNodeAnalogin | meiCanNodeAnalogOutGet | CAN Analog Values

file://IC|/htmlhelp/Software-MPI1/docs/CAN/Method/ndanlgoutset2.htm (2 of 2) [7/27/2005 10:52:04 AM]

file:///C|/htmlhelp/Software-MPI/topics/can_io_overview.htm

mei CanNodeA nal ogOutGet

meiCanNodeAnalogOutGet

Declaration
| ong nei CanNodeAnal ogQut CGet (VEI Can can,
| ong node,
| ong channel ,
| ong *state);

Required Header: stdmei.h
Change History: Added in the 03.03.00

Description

meiCanNodeAnalogOutGet gets the current state of an analog output on the
specified CAN node.

can handle to the CAN object

node the node number of the CANOpen node.

channel the index of the analog output.

*state a pointer to where the current state of the output is written to by this function.
See CAN Analog Values.

Return Values

M PIM essageOK

Sample Code

The following code shows how to get the state of analog output 3 on node 5.

| ong anal 0g3;
nmei CanNodeAnal ogQut Get (can, 5, 3, &anal og3);

See Also

meiCanNodeAnalogln | meiCanNodeAnalogOutSet | CAN Analog Values

file:///C|/htmlhelp/Software-MPIl/docs/CAN/Method/ndanlgoutget2.htm (1 of 2) [7/27/2005 10:52:04 AM]

file:///C|/htmlhelp/Software-MPI/topics/can_io_overview.htm
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0
file:///C|/htmlhelp/Software-MPI/topics/can_io_overview.htm

meiCanNodeDigitalIn

meiCanNodeDigitalln

Declaration
| ong nei CanNodeDi gi t al I n(MEl Can can,
| ong node,
| ong bitStart,
| ong bi t Count

unsi gned | ong *state);

Required Header: stdmei.h
Change History: Added in the 03.03.00

Description

meiCanNodeDigitalln gets the current state of one or multiple digital inputs on the
specified CAN node.

can handle to the CAN object
node the node number of the CANOpen node.
bitSmart the first input bit on the CAN node that will be returned by this function.
bitCount the number of bits that will be returned by the function.
*state the address of the current state of the input(s) that is returned.
Return Values
M PIM essageOK
Sample Code

The following code shows how to get the state of controller input 1.

unsi gned | ong i nput 3;
mei CanDigitalIn(can, 5, 3, 1, & nput3);

See Also

meiCanNodeDigitalOutSet | meiCanNodeDigitalOutGet

file:///C|/htmlhelp/Software-MPIl/docs/CAN/Method/nddigin2.htm (1 of 2) [7/27/2005 10:52:04 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanNodeDigital OutSet

meiCanNodeDigitalOutSet

Declaration
| ong nei CanNodeDi gi t al Qut Set (MEI Can can,
| ong node,
| ong bitStart,
| ong bi t Count ,
unsi gned | ong state,
MPI _BOOL wait);

Required Header: stdmei.h
Change History: Added in the 03.03.00

Description

meiCanNodeDigitalOutSet changes the state of one or multiple digital outputs on the
specified CAN node.

can handle to the CAN object

node the node number of the CANOpen node.

bitSmart the first output bit on the CAN node that will be returned by this function.
bitCount the number of bits that will be set by the function.

state the new state of the outputs on the CANOpen node.

wait aBoolean flag that indicates if the new output state isimmediately applied or a

wait isinserted so that any previously set output is transmitted over CAN first
before applying the new output state.

Return Values

M PIM essageOK

Sample Code
The following code shows how to set the state of digital output 3 on node 5.

nei CanDi gital QutSet(can, 5, 3, 1, 1, 1);

file:///C|/htmlhelp/Software-MPIl/docs/CAN/Method/nddigoutset2.htm (1 of 2) [7/27/2005 10:52:05 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanNodeDigital OutSet

See Also

meiCanNodeDigitalOutGet | meiCanNodeDigitalln

file:/lIC|/htmlhelp/Software-MPI/docs/CAN/Method/nddigoutset2.htm (2 of 2) [7/27/2005 10:52:05 AM]

mei CanNodeDigital OutGet

meiCanNodeDigitalOutGet

Declaration
| ong nei CanNodeDi gi t al Qut Get (MEI Can can,
| ong node,
| ong bitStart,
| ong bi t Count ,

unsi gned | ong *state);

Required Header: stdmei.h
Change History: Added in the 03.03.00

Description

meiCanNodeDigitalOutGet gets the current state of one or multiple digital outputs on
the specified CAN node.

can handle to the CAN object
node the node number of the CANOpen node.
bitSmart the first output bit on the CAN node that will be returned by this function.
bitCount the number of bits that will be returned by the function.
*state the address of the current state of the output(s) that is returned.
Return Values
M PIM essageOK
Sample Code

The following code shows how to get the state of digital output 3 on node 5.

unsi gned | ong out put 3;
nmei CanDi gital QutGet (can, 5, 3, 1, &output3);

See Also

meiCanNodeDigitalOutSet | meiCanNodeDigitalln

file:///C|/htmlhelp/Software-MPI/docs/CAN/Method/nddigoutget2.htm (1 of 2) [7/27/2005 10:52:05 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanFirmwareDownl oad

meiCanFirmwareDownload

Declaration

| ong nei CanFi r mnar eDownl oad(VEI Can can,

const char* fil ename,
MEI CanCal | back cal | back);

Required Header: stdmei.h
Change History: Modified in the 03.03.00

Description

meiCanFirmwareDownload allows the user to upgrade the CAN controller's
firmware.

This operation will take some time (between 10 and 30 seconds) to perform the
download process. Therefore, the callback function is provided to allow the current
status of the download operation to be reported to the calling application and to also
allow the calling application to abort the download if required. The callback function
passes the progress of the download process to the calling application. The calling
applications normally returns a 0 unless it wants to abort the upgrade. If the upgrade
Is aborted, it returns a 1.

can handle to the CAN object
filename the filename of the CAN controller firmware (*.out file).
callback apointer to the call back function. (Pass an address of zero if you do not have a

callback function.)

Return Values

M PIM essageOK

See Also

meiCanFirmwareErase | meiCanFirmwareUpload

file:///C|/htmlhelp/Software-MPIl/docs/CAN/Method/fmwrdnld2.htm [7/27/2005 10:52:05 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanFirmwareErase

meiCanFirmwareErase

Declaration
| ong nei CanFi r mnar eEr ase(MEl Can can);

Required Header: stdmei.h

Description

meiCanFirmwareErase allows the user to erase the CAN controllers firmware.

can handle to the CAN object

Return Values

M PIM essageOK

See Also

meiCanFirmwareDownload | meiCanFirmwareUpload

file://IC|/htmlhelp/Software-MPI/docs/CAN/Method/fmwrers2.htm [7/27/2005 10:52:05 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanFirmwareUpload

meiCanFirmwareUpload

Declaration

| ong nei CanFi r mmar eUpl oad(VEI Can can,

const char* fil ename,
MEI CanCal | back cal | back);

Required Header: stdmei.h
Change History: Modified in the 03.03.00

Description

meiCanFirmwareUpload allows the user to get a copy of the current CAN controller's
firmware.

This operation will take some time (between 10 and 30 seconds) to perform the
upload process. Therefore, the callback function is provided to allow the current status
of the upload operation to be reported to the calling application and to also allow the
calling application to abort the upgrade (if required). The callback function passes the
progress of the upgrade process to the calling application. The calling applications
normally returns O unless it wants to abort the upgrade. If the upgrade is aborted, it

returns a 1.
can handle to the CAN object
filename the filename of the CAN controller firmware (*.out file).
callback apointer to the call back function. (Pass an address of zero if you do not have a
callback function.)
Return Values
M PIM essageOK
See Also

meiCanFirmwareErase | meiCanFirmwareDownload

file:///C|/htmlhelp/Software-MPIl/docs/CAN/Method/fmwrupld2.htm [7/27/2005 10:52:06 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanM emory

meiCanMemory

Declaration

| ong nei CanMenor y(MEl Can can,
voi d** nmenory) ;

Required Header: stdmei.h
Description

meiCanMemory returns a pointer to the base of the CAN processors DPR. This

function is generally not used and is provided for implementing advanced features of
the MPI.

can handle to the CAN object

memory a pointer to the base of the CAN processors DPR.

Return Values

M PIM essageOK

See Also

meiCanMemoryGet | meiCanMemorySet

file://IC|/htmlhelp/Software-MPI/docs/CAN/Method/mem2.htm [7/27/2005 10:52:06 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanM emoryGet

meiCanMemoryGet

Declaration
| ong nei CanMenor yCet (VEI Can can,
voi d* dst
const voi d* Src,
| ong count);

Required Header: stdmei.h
Change History: Modified in the 03.03.00

Description

meiCanMemoryGet copies the specified number of bytes from controller's memory to
the application's memory. This function is generally not used and is provided for
implementing advanced features of the MPI.

can handle to the CAN object
dst the base address of the destination
src the base address of the source
count the number of bytes to copy
Return Values
M PIM essageOK

See Also

meiCanMemory | meiCanMemorySet

file:///C|/htmlhelp/Software-MPIl/docs/CAN/Method/memget2.htm [7/27/2005 10:52:06 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanM emory Set

meiCanMemorySet

Declaration
| ong nei CanMenor ySet (VEI Can can,
voi d* dst
const voi d* Src,
| ong count);

Required Header: stdmei.h
Change History: Modified in the 03.03.00

Description

meiCanMemorySet copies the specified number of bytes from the application's
memory to the controller's memory. This function is generally not used and is
provided for implementing advanced features of the MPI.

can handle to the CAN object
dst the base address of the destination
src the base address of the source
count the number of bytes to copy
Return Values
M PIM essageOK

See Also

meiCanMemory | meiCanMemoryGet

file:///C|/htmlhelp/Software-MPIl/docs/CAN/Method/memset2.htm [7/27/2005 10:52:06 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei Canlnit

meiCanlnit

Declaration
| ong nei Canl ni t (VEI Can can);

Required Header: stdmei.h
Change History: Added in the 03.03.00

Description

meiCanlnit will reset the CAN network and will not affect the rest of the controller or
SyngNet.

can handle to the CAN object

Return Values

M PIM essageOK

See Also

file://IC|/htmlhelp/Software-MPI/docs/CAN/Method/init2.htm [7/27/2005 10:52:07 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0

mei CanControl

meiCanControl

Declaration

MPI Cont rol nei CanCont r ol (MEI Can can);

Required Header: stdmei.h
Change History: Added in the 03.02.00

Description

meiCanControl returns a handle to the control object associated with the Can object.

can a handle to a Can object.

Return Values

MPIControl a handle to a control object.

MPIHandlevVOID if the object could not be created
See Also

meiCanCreate | mpiControlCreate

file://IC|/htmlhelp/Software-MPI/docs/CAN/Method/cnl2.htm [7/27/2005 10:52:07 AM]

file:///C|/htmlhelp/Software-MPI/docs/Control/cnl_out.htm
file:///C|/htmlhelp/Software-MPI/docs/Control/Method/create1.htm

mei CanNumber

meiCanNumber

Declaration

| ong nei CanNunber (VEI Can can,
| ong *nunber) ;

Required Header: stdmei.h
Change History: Added in the 03.02.00

Description

meiCanNumber reads the index of a Can object and writes it into the contents of a
long pointed to by number. Each Can node associated with a controller is indexed by
a number (0, 1, 2, etc.).

can a handle to a Can object.

*number a pointer to the index of a Can node.

Return Values

M PIM essageOK

MPIMessageARG INVALID

MPIMessageHANDLE INVALID

See Also

meiCanNodelnfo

file:///IC|/htmlhelp/Software-MPI/docs/CAN/Method/num2.htm [7/27/2005 10:52:07 AM]

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#1
file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#3

MEICanBitRate

MEICanBitRate
Definition

t ypedef enum {
MEI CanBi t Rat e1000K = O,
MEI CanBi t Rat e800K,
MEI CanBi t Rat e500K,
MEI CanBi t Rat e250K,
MEI CanBi t Rat e125K,
MEI CanBi t Rat e50K,
MEI CanBi t Rat e20K,
MEI CanBi t Rat e10K
} MElI CanBit Rat e;

Description

MEICanBitRate enumerates all the valid bit rates that the CANOpen interface can
use. These are the recommended bit rates that the CANOpen standard defines.

For more information see the Bit Rate section.

See Also

file:///C|/htmlhelp/Software-MPIl/docs/CAN/DataType/bitrat2.htm [7/27/2005 10:51:54 AM]

MEICanBusState

MEICanBusState
Definition

t ypedef enum {
MElI CanBus St at eOFF,
MElI CanBus St at ePASSI VE,
MEI CanBus St at e OPERATI ONAL
} MEI CanBusSt at e;
Description

MEICanBusState enumerates the bus states that the controller's CAN interface can
take.

To see how the CanBusState is displayed in Motion Console, click here.
See Also

CAN Bus State

file://IC|/htmlhelp/Software-MPI1/docs/CAN/DataType/busstate2.htm [7/27/2005 10:52:07 AM]

file:///C|/htmlhelp/Utilities/MotionConsole/mc_23.html#status

MEICanCallback

MEICanCallback
Definition

t ypedef | ong (*Mel CanCal | back) (I ong percent age) ;

Description

MEICanCallback is the definition of a call back function used during the firmware
download.

See Also

file:///C|/htmlhelp/Software-MPIl/docs/CAN/DataType/callbak2.htm [7/27/2005 10:52:05 AM]

MEICanCommand

MEICanCommand
Definition

t ypedef struct MEl CanCommand {
MEI CanCommandType type;
| ong dat a[6] ;
} MElI CanConmand;

Description

MEICanCommand holds the command request and response for an
meiCanCommand.

type The type of CAN command.
data Data associated with the command.
See Also

meiCanCommand

file:/lIC|/htmlhelp/Software-MPI/docs/CAN/DataType/cmd2.htm [7/27/2005 10:52:03 AM]

MEICanCommandType

MEICanCommandType
Definition

t ypedef enum {
MVElI CanCommandTy peSDO READ,
MEI CanCommandTypeSDO WRI TE,
MEI CanCommandTypeCLEAR _STATUS BI TS,
VEI CanCommandTypeBUS START,
MVEI CanCommandTy peBUS _STOP,
MEI CanCommand Ty peNMI_ENTER_PRE_OPERATI ONAL,
MEI CanComand Ty peNMI_START _REMOTE_NODE,
MEI CanComand Ty peNMI_STOP_REMOTE_NODE,
MEI CanCommandTy peNMI_RESET _NODE,
MEI CanComandTypeNMI_RESET_COVMUNI CATI ON,
} MEI CanCommandType;

Description

MEICanCommandType enumerates the different type of commands that can be used
with meiCanCommand.

MEICanCommandTypeSDO_READ

This command reads the remote nodes object dictionary using the SDO protocol.

Command data:
data[0] = Node
data[1] = Index
data[2] = Sublndex
data[3] = Length

Returned data:

data[0] = Error code
data[4] = Low Dataword
datg[5] = High Dataword

MEICanCommandTypeSDO_WRITE

file:///C|/htmlhelp/Software-MPIl/docs/CAN/DataType/cmdty2.htm (1 of 4) [7/27/2005 10:52:08 AM]

MEICanCommandType

This command writes to a remote nodes object dictionary using the SDO protocol.

Command data:

data[0] = Node

data[1] = Index

data[2] = Sublndex
data[3] = Length

data[4] = Low Dataword
data[5] = High Dataword

Returned data:
data[0] = Error code

MEICanCommandTypeCLEAR_STATUS BITS
Clear selected MEICanStatusBits.

Command data:
data[0], Bit map of MEICanStatusBits to clear.

Returned data:
data[0] = Error code

MEICanCommandTypeBUS START

This puts the CAN businto operationa stateif it is Bus off.

Command data:
None

Returned data:
data]0] = Error code

MEICanCommandTypeBUS STOP

This puts the CAN businto operational stateif it is Bus off.

Command data:
None

Returned data:
data[0] = Error code

MEICanCommandTypeNMT_ENTER_PRE_OPERATIONAL

file:///C|/htmlhelp/Software-MPIl/docs/CAN/DataType/cmdty2.htm (2 of 4) [7/27/2005 10:52:08 AM]

MEICanCommandType

Thisissues the CANOpen NMT command "Enter Pre-Operational” to a node.

Command data:
data[0] = Node number, (0 broadcasts to all nodes)

Returned data:
data[0] = Error code

MEICanCommandTypeNMT_START_REMOTE_NODE

Thisissues the CANOpen NMT command " Start Remote Node" to a node.

Command data:
data[0] = Node number, (0 broadcasts to all nodes)

Returned data:
data[0] = Error code

MEICanCommandTypeNMT_STOP_REMOTE_NODE

Thisissues the CANOpen NMT command " Stop Remote Node" to a node.

Command data:
data[0] = Node number, (0 broadcasts to all nodes)

Returned data:
data[0] = Error code

MEICanCommandTypeNMT_RESET_NODE

Thisissuesthe CANOpen NMT command "Reset Node" to a node.

Command data:
data 0] = Node number, (0 broadcaststo all nodes)

Returned data:
data[0] = Error code

MEICanCommandTypeNMT_RESET_COMMUNICATION

Thisissues the CANOpen NMT command "Reset Communication” to a node.

Command data:
data] 0] = Node number, (0 broadcasts to all nodes)

Returned data:
data[0] = Error code

See Also

file:///C|/htmlhelp/Software-MPIl/docs/CAN/DataType/cmdty2.htm (3 of 4) [7/27/2005 10:52:08 AM]

MEICanCommandType

meiCanCommand

file://IC|/htmlhelp/Software-MPI/docs/CAN/DataType/cmdty2.htm (4 of 4) [7/27/2005 10:52:08 AM]

MEICanConfig

MEICanConfig
Definition

t ypedef struct

MVEI CanConfi g {

MEI CanBi t Rat e bi t Rat e;

unsi gned | ong cyclicPeri od;
unsi gned | ong heal t hPeri od,
unsi gned | ong nodeNunber ;
unsi gned | ong i nhi bi t Ti nme;

} MElI CanConfi g;

Description

MEICanConfig holds the configuration of the CAN object. The default state for this
structure is held in the controller's flash. Use the meiCanConfigGet/Set and
meiCanNodeConfigGet/Set to interrogate and change to what the CAN system is
currently using or the default.

bitRate

cyclicPeriod

healthPeriod

nodeNumber

inhibitTime

See Also

The bit rate the CAN bus uses.
See also CAN Bit Rate.

The period (milliseconds) between sending consecutive SY NC messages. A
value of zero will disable the SYNC messages from being produced.
See also CAN Transmission Types.

The period (milliseconds) used for checking the health of nodes. A value of
zero will disable the health checking protocol. For nodes that use the node
guarding protocol, thisis the node guarding period. For nodes that use the
heartbeating protocol, thisis the heartbeat consumer time (the heartbeat
producers are half this period).

See d'so CAN Node Health.

The node number of the controller on the CAN network. CANOpen requires
that the master node has a valid node number to implement the heartbeat
protocol.

See also CAN Node Numbers.

The global time used for the node health protocols.
See also CAN Transmission Types.

meiCanConfigGet | meiCanConfigSet | meiCanNodeConfigGet |

meiCanNodeConfigSet

file:///C|/htmlhelp/Software-MPIl/docs/CAN/DataType/cf2.htm (1 of 2) [7/27/2005 10:51:53 AM]

MEICanHealthType

MEICanHealthType
Definition

t ypedef enum {
MEI CanHeal t hTy peNODE_GUARDI NG,
MEl CanHeal t hTypeHEART _BEATI NG
} MEl CanHeal t hType;
Description

MEICanHealthType is used to report the health protocol that the XMP is using with
each node.

See Also

file:///C|/htmlhelp/Software-MPIl/docs/CAN/DataType/healthty2.htm [7/27/2005 10:51:57 AM]

MEICanMessage

MEICanMessage
Definition

t ypedef enum {
VElI CanMessageFl RMAARE_| NVALI D,
MEI CanMessageFl RMAARE_VERSI ON,
MElI CanMessageNOT _| NI TALI ZED,
MElI CanMessageCAN | NVALI D,
MElI CanMessagel O _NOT_SUPPORTED,
VElI CanMessageF| LE_FORMAT_ERROR,
MElI CanMessageUSER_ABORT,
MElI CanMessage COVMVAND _PROTOCQOL,
MPI CanMessagel NTERFACE_NOT_FOUND,
MEI CanMessageNODE _DEAD,
MElI CanMessageSDO_TI MEQUT,
MEI CanMessageSDO_ABORT,
MEl CanMessageSDO_PROTOCOL,
MEl CanMessageTX_ OVERFLOW
MElI CanMessageRTR_TX_ OVERFLOW
MElI CanMessageRX_BUFFER_EMPTY,
MElI CanMessageBUS_OFF,
MEI CanMessageS|I GNATURE | NVALI D,
} MEl CanMessage;

Change History: Modified in the 03.02.00
Description

MEICanMessage is an enumeration of Can error messages that can be returned by the
MPI library.

MEICanM essageFIRMWARE_INVALID

The CAN firmware is not valid. This message code is returned by meiCanCreate(...) if the CAN

hardware bootloader detects no firmware has been loaded or the firmware signature is not
recognized. To correct this problem, download valid firmware with mei CanFirmwareDownload(...).

MEICanM essageFIRMWARE_VERSION

The CAN firmware version does not match the software version. This message code is returned by
mei CanCreate(...), mei CanFirmwareDownload(...), or meiCanFirmwareUpload(...) if the CAN
firmware version is not compatible with the MPI library. To correct this problem, download the
proper firmware version with mel CanFirmwareDownload(...).

MEICanMessageNOT_INITIALIZED

file:///C|/htmlhelp/Software-MPIl/docs/CAN/DataType/mes2.htm (1 of 3) [7/27/2005 10:52:08 AM]

MEICanMessage

The CAN firmware did not initialize. This message code is returned by meiCanCreate...) if the
controller did not copy the configuration structure from flash to memory after power-on or controller
reset. To correct this problem, verify the controller firmware is correct and the controller hardwareis
operating properly.

MEICanM essageCAN_INVALID

The can network number is out of range. This message code is returned by meiCanCreatey...) if the
network number is less than zero or greater than or equal to MEICanNetworkMAX.

MEICanMessagel O_NOT_SUPPORTED

The CAN node does not support the specified I/O. This message code is returned by CAN methods
that read/write to adigital or analog input/output that is out of range. To prevent this problem,
specify a supported 1/0 bit.

MEICanMessageFILE_FORMAT_ERROR

The CAN firmware file format has an error. This message code is returned by

mei CanFirmwareDownload(...) if the specified file has an error in itsinternal headers. Thisindicates
acorrupted file. To correct this problem, use the original CAN firmware file or reinstall the software
distribution.

MEICanMessageUSER_ABORT

The CAN firmware loading was aborted. This message code is returned by
mei CanFirmwareDownload(...) or melCanFirmwareUpload(...) when the firmware loading is aborted

by the user viathe callback function. This message code is returned for application notification. It is
not an error.

MEI CanM essageCOMMAND_PROTOCOL

The CAN command failed due to a protocol error. This message codeis returned by CAN methods
that do not get avalid response from a CAN node. To correct this problem, check your CAN nodes
for proper operation.

MPICanMessagel NTERFACE_NOT_FOUND

The CAN interface is not available. This message code is returned by meiCanCreate(...) if the

specified controller does not support a CAN network interface. To correct this problem, use a
controller that hasa CAN interface.

MEICanMessageNODE_DEAD

The CAN node does not respond. This message code is returned by CAN methods that read/write
from a CAN node and the node fails the health check. This message code indicates a node hardware
or network connection problem. To correct this problem, verify the node operation and network
connections.

MEICanMessageSDO_TIMEOUT

file:///C|/htmlhelp/Software-MPIl/docs/CAN/DataType/mes2.htm (2 of 3) [7/27/2005 10:52:08 AM]

MEICanMessage

The CAN command failed due to atimeout. This message code is returned by CAN methods that do
not get a response from a CAN node within the timeout period. To correct this problem, check your
CAN nodes for proper operation.

MEICanMessageSDO_ABORT

The CAN command failed due to a user abort. This message code is returned by CAN methods when
an SDO transaction is aborted.

MEICanMessageSDO_PROTOCOL

The CAN command failed due to an SDO protocol error. This message code is returned by CAN
methods when an SDO transaction fails because the node did not conform to the CANOpen protocol.

MEICanMessageT X_OVERFLOW

The controller's transmit buffer overflowed. This message code is returned by CAN methods that
failed to transmit a message due to an internal memory buffer overflow.

MEICanMessageRTR_TX_OVERFLOW

The controller's transmit buffer overflowed. This message code is returned by CAN methods that
failed to transmit a message due to an internal memory buffer overflow.

MEI CanM essageRX_BUFFER_EMPTY

The controller's receive buffer is empty. This message code is returned by CAN methods that
expected to get aresponse from a CAN node, but the controller's receive buffer was empty.

MEICanMessageBUS OFF

The CAN network busisin the off state. This message code is returned by CAN methods that are not
able to use the CAN network because the busis off. To correct this problem, verify the node
operation and network connections.

MEI CanM essageSIGNATURE_INVALID

When initialising the CAN system, some tests are performed to make sure that the CAN processor is
returning avalid signature value. If an unexpected signature is returned, this error message is
returned. A probable cause for this error is that the bootloader isinvalid. To correct this problem, you
will need to return the controller to MEI to fix the bootloader.

See Also

file:///C|/htmlhelp/Software-MPIl/docs/CAN/DataType/mes2.htm (3 of 3) [7/27/2005 10:52:08 AM]

MEICanNMT State

MEICanNMTState
Definition

t ypedef enum {
MEI CanNMTSt at eBOOT_UP,
MEI CanNMT St at e STOPPED,
MEI CanNMT St at e OPERATI ONAL,
MEI CanNMT St at ePRE_OPERATI ONAL,
VElI CanNMT St at e UNKNOV,
} MElI CanNMTSTATE;

Description

MEICanNMTState enumerates the NMT (network management) states of a node on
a CANOpen network. The XMP's CAN controller will automatically put all nodes into
the Operational state during the initialization of the network.

See Also

file:///C|/htmlhelp/Software-MPIl/docs/CAN/DataType/nmtstate2.htm [7/27/2005 10:52:08 AM]

MEICanNodeConfig

MEICanNodeConfig
Definition

t ypedef struct MEl CanNodeConfig {
MEI CanTr ansmi ssi onType di gi tal Qut Transm ssi onType;
MEI CanTr ansni ssi onType anal ogQut Transm ssi onType;
MEI CanTr ansm ssi onType digital Il nTransm ssi onType;
MElI CanTr ansm ssi onType anal ogl nTransm ssi onType;

} MElI CanNodeConfi g;

Description
MEICanNodeConfig is the configuration of each node on the CAN bus. You can
select which type of communication (event or cyclic) is to be used for the different
types of IO data that a node supports.

For more information, see the CAN Transmission Types section.

See Also

file:///C|/htmlhelp/Software-MPIl/docs/CAN/DataType/ndcf2.htm [7/27/2005 10:51:56 AM]

MEICanNodelnfo

MEICanNodelnfo
Definition

t ypedef struct MEl CanNodel nfo {

MEI CanNodeType type;

unsi gned | ong di gi t al | nput Count ;
unsi gned | ong di gi t al Qut put Count ;
unsi gned | ong anal ogl nput Count ;
unsi gned | ong anal ogQut put Count ;
MEI CanHeal t hType heal t hType;

VEI CanNodel nf oVendor vendor | D

VEI CanNodel nf oPr oduct Code pr oduct Code;

unsi gned | ong ver si onNunber ;

unsi gned | ong seri al Nunber ;

} MEI CanNodel nf o;

Change History: Modified in the 03.03.00

Description

MEICanNodelnfo describes how many of the different types of 1/O are on this node.

type An enumeration indicating the type of node found at startup, or
MEICanNodeTypeNONE if no node was found.

digitallnputCount ~ The number of digital inputs supported by this node. The CANOpen protocol
only alows the number of digital inputsto be interrogated in multiples of
eight, i.e. if anode has two digital inputs then digitallnputCount will return
eight. MEI CANOpen SLICE nodes support an extension to the CANOpen
protocol that allows the exact number of digital inputs to be returned in this
field.

digitalOutputCount The number of digital outputs supported by this node. The CANOpen
protocol only allows the number of digital outputs to be interrogated in
multiples of eight, i.e. if anode has two digital outputs then
digital OutputCount will return eight. MEI CANOpen SLICE nodes support
an extension to the CANOpen protocol that allows the exact number of
digital outputs to be returned in thisfield.

analoglnputCount The number of analog inputs supported by this node.
analogOutputCount The number of analog outputs supported by this node.

healthType The type of health checking protocol being used with this node.
See also CAN Node Health.

file:///C|/htmlhelp/Software-MPIl/docs/CAN/DataType/ndinf2.htm (1 of 2) [7/27/2005 10:51:57 AM]

MEICanNodelnfo

vendorld Thisisanumber read from the node. Vendor ID numbers are unigue numbers
allocated to each manufacturer of CANOpen nodes. Not all CANOpen nodes
support this feature, in which case, these nodes will return zero for thisfield.
MEI CANOpen nodes always return 0x014F. See also
M El CanNodel nfoVendor.

productCode Thisisanumber read from the node. The product code is made up of
numbers allocated by each manufacturer to uniquely identify their different
types of nodes. Not all CANOpen nodes support this feature, in which case,
these nodes will return zero for thisfield. MEI CANOpen SLICE nodes
always return 0x0204. See also M El CanNodel nfoProductCode.

ver sonNumber Thisis anumber read from the node. The version number identify the version
of code running on this CANOpen node. Not all CANOpen nodes support
this feature, in which case, these nodes will return zero for thisfield. MEI
CANOpen nodes do support this field.

serialNumber Thisisanumber read from the node. The serial number uniquely identifies
each CANOpen node. Not all CANOpen nodes support this feature, in which
case, these nodes will return zero for thisfield. MEI CANOpen SLICE nodes
do support this field and the number is also on the side label of the Network
adapter.

See Also

file:///C|/htmlhelp/Software-MPIl/docs/CAN/DataType/ndinf2.htm (2 of 2) [7/27/2005 10:51:57 AM]

MEICanNodeType

MEICanNodeType
Definition

t ypedef enum {
VEI CanNodeTy pe NONE
MEI CanNodeTypel O

} MEI CanNodeType;

401

Description

MEICanNodeType enumerates the different types of nodes that the XMP has
detected. MEICanNodeTypeNONE is returned if no node is found or an unsupported
node type is detected.

See Also

CAN Node Health

file:/lIC|/htmlhelp/Software-MPI/docs/CAN/DataType/ndty2.htm [7/27/2005 10:51:57 AM]

MEICanNodel nfoVendor

MEICanNodelnfoVendor
Definition

t ypedef enum {
MElI CanNodel nf oVendor UNKNOWN = O,
MElI CanNodel nf oVendor MEI = 0x014F
} MEI CanNodel nf oVendor ;

Change History: Added in the 03.03.00

Description

MEICanNodelnfoVendor defines some vendor Ids for CANOpen nodes. A zero
vendor ID (UNKNOWN) indicates that the manufacturer does not support the
CANOpen method to read this from the node.

See Also

MEICanNodelnfo

file:///C|/htmlhelp/Software-MPIl/docs/CAN/DataType/ndinfvdr2.htm [7/27/2005 10:51:57 AM]

M EICanNodel nfoProductCode

MEICanNodelnfoProductCode
Definition

t ypedef enum {

MEI CanNodel nf oPr oduct CodeUNKNOWN = O,

MEI CanNodel nf oPr oduct CodeMEl _SLI CE | O = 0x0204
} MEI CanNodel nf oPr oduct Code;

Change History: Modified in the 03.03.00

Description
MEICanNodelnfoProductCode defines the product codes for the MEI manufactured
CANOpen nodes. If the node is not manufactured by MEI then the product code may

be any non-zero number. A zero product code (UNKNOWN) indicates that the
manufacturer does not support the CANOpen method to read this from the node.

See Also

MEICanNodelnfo | Slice-I/O Hardware

file://IC|/htmlhelp/Software-MPI/docs/CAN/DataType/ndinfprodcod2.htm [7/27/2005 10:51:58 AM]

file:///C|/htmlhelp/Hardware/IO/Slice-IO/home.htm

MEICanNodeStatus

MEICanNodeStatus
Definition

t ypedef struct MEl CanNodeSt at us {
unsi gned | ong live;
MVEI CanNMT'St at e nnt St at e;

} MEI CanNodeSt at us;

Description

MEICanNodeStatus holds the current status of a node.

live Set if the nodeisalive, clear if the node is dead.
nmtState The current NMT state that the node is reporting.
See Also

CAN Node Health

file:///IC|/htmlhelp/Software-MPI/docs/CAN/DataType/ndsts2.htm [7/27/2005 10:52:00 AM]

MEICanStatus

MEICanStatus

Definition

t ypedef struct MEl CanStatus {

MVEI CanBus St at e

| ong
| ong
| ong
| ong
| ong
| ong
} MElI CanSt at us;

Description

busSt at e;

transm t Error Count er;
recei veError Counter;
nmessageRat e;

tick;

sof t war eRecei veOver f | ow,
har dwar eRecei veOver f | ow;

MEICanStatus holds the current status of the XMP's or ZMP's CAN object.

busState
transmitError Counter
receivekError Counter
messageRate

tick

softwar eReceiveOver flow

har dwar eReceiveOver flow

See Also

The current bus state of the XMP'sor ZMP's CAN interface.
The current value of the transmit error counter.

The current state of the receive error counter.

The number of messages received and transmitted per second.
Thisisincremented every 1ms by the CAN firmware.

This bit will be set if software receive buffer has overflowed.
This bit can be cleared by using the CLEAR_STATUS BITS
command.

Thisbit will be set if the CAN interface hardware has detected
an overflow. This bit can be cleared by using the
CLEAR_STATUS BITS command.

file:///C|/htmlhelp/Software-MPI/docs/CAN/DataType/sts2.htm [7/27/2005 10:52:02 AM]

MEICanTransmissionType

MEICanTransmissionType
Definition

t ypedef enum {
MEI CanTr ansmi ssi onTypeCYCLI C
MEI CanTr ansni ssi onTypeEVENT
} MElI CanTransm ssi onType;

=

I

Description
MEICanTransmissionType enumerates the transmission types a node can use.

For more information, see the CAN Transmission Types section.

See Also

file://IC|/htmlhelp/Software-MPI/docs/CAN/DataType/transmisty2.htm [7/27/2005 10:52:08 AM]

MEICanVersion

MEICanVersion
Definition

t ypedef struct MEl CanVersion {

| ong boot | oader Ver si on;

| ong firmnar eVer si on;
char firmvar eRevi si on;

| ong firmvar eSubRevi si on;

} MEI CanVer si on;

Description

MEICanVersion holds the version information about the XMP's or ZMP's CAN object.

bootloaderVersion The version number of the CAN bootloader.
firmwareVersion The CAN firmware version.
firmwar eRevsion The CAN firmware revision.

firmwareSubRevision The CAN firmware subrevision.

See Also

file:///C|/htmlhelp/Software-MPIl/docs/CAN/DataType/ver2.htm [7/27/2005 10:51:57 AM]

MEICanNetworkMAX

MEICanNetworkMAX
Definition
#defi ne MEl CanNet wor kKMAX (1)
Change History: Added in the 03.02.00
Description

MEICanNetworkMAX defines the maximum number of Can networks supported by a
controller.

See Also

meiCanCreate

file://IC|/htmlhelp/Software-MPI1/docs/CAN/DataType/netmax5.htm [7/27/2005 10:52:09 AM]

CAN Bit Rate

CAN Bit Rate

The CANOpen standard defines a set of bit rates that can be supported. Any
CANOpen node must support at least one of these bit rates. All the nodes on the CAN
network must be operating at the same bit rate. Any of these standard bit rates can be
used with the XMP.

Due to the electrical characteristics of a CAN network, the maximum length of a CAN
network (and the corresponding drop lengths) is dependent upon the bit rate that is
chosen. See the table below.

It is recommended that opto-isolated nodes are used on networks with bus lengths
longer than 200m.

CANOpen Bit Rates

Bit Rate Max Bus Max Drop Max Cumulative
Length (m) Length (m) Drop Length (m)
M 25* 2 10
800k 50* 3 15
500k 100 6 30
250k 250 12 60
125k 500 24 120
50k 1000 60 300
20k 2500 150 750
10k 5000 300 1500

* No opto-isolation

file:///C|/htmlhelp/Software-MPI/docs/CAN/Topics/bit_rate.htm [7/27/2005 10:51:54 AM]

CAN Bus State

CAN Bus State

All CAN hardware maintains two error counters that are increased when transmit or
receive errors are detected, and decreased when successful transmissions or
receptions are achieved. In an error free operational system, these counters should
be zero. The magnitude of these counters control the following state machine:

Lser Command

Default /—\

Off Operational Error Passive

TxErrorCounter = 96
OR
RxErrorCounter > 96

TxErrarCounter <= 96
AMD
RxErrarCounter <= 96

TxErrorCount = 255

When a node is in the Operational state it will participate fully with all
communications over the network, as the errors increase the CAN hardware will
become Passive (detecting errors but not generating error messages), before turning
Off and isolating the node from the network once the TxErrorCount exceeds 255 error
messages. This feature allows nodes that are either malfunctioning or not configured

correctly to be isolated for the network, thereby allowing the remaining nodes to
successfully communicate.

file:///IC|/htmlhelp/Software-MPI/docs/CAN/Topics/bus_state.htm [7/27/2005 10:51:59 AM]

CAN Transmission Types

CAN Transmission Types

Introduction

The XMP CANOpen interface uses four messages (serial packets of data on the CAN
bus) to pass I/0O data between the XMP and an I/0O node. Each message contains
either the digital input, digital output, analog input, or analog output data. The XMP
supports two standard communication methods to transmit 1/O data between the XMP
and each of the I/0O nodes-cyclic transmission and event transmission. For most
applications, cyclic messaging (the default) will be sufficient, but the transmission type
fields within the MEICanNodeConfig structure allow the user to select an alternative

transmission type for each of the 1/O messages going to and from a node.

Cyclic Transmission

The Cyclic Transmission type, transfers 1/0O data messages between the XMP and the
nodes using a cyclic protocol. The trigger for each cycle is a synchronization message
that is transmitted at a regular rate by the XMP. When a node receives the
synchronization message, it latches and transmits the current state of its inputs.
Immediately after receiving the synchronization message, the master also transmits
command messages to all the nodes with their new output states, which will get
applied on the next synchronization message. An idle period is also needed to allow
time for any non-cyclic messages to be transmitted.

Cyclic Period
L
! L
Master | |
£l =
& oy
I |
Slaves v v
OO Idle
Messages

The advantage of this scheme is that it generates a predicable loading of data on the
bus. The latency on transmitted data is predictable, but the latency is not the absolute
minimum that can be achieved.

Cyclic Period
The cyclicPeriod field within the MEICanConfig structure allows the user to specify the

period (in milliseconds) that the XMP will use between the successive transmission of
synchronization messages. The minimum cyclic period that can be used is dependent

file:///IC|/htmlhelp/Software-MPI/docs/CAN/Topics/trans_type.htm (1 of 3) [7/27/2005 10:51:54 AM]

CAN Transmission Types

upon the chosen bit rate and the number of nodes. Assuming that all the nodes have
inputs and outputs that are analog and digital, the minimum cyclic period that can be
used is given in the following table.

CANOpen Cyclic Period

Bit Rate < 5 Nodes < 10 Nodes < 50 Nodes < 128 Nodes

1M 3 5 30 60

800k 3 6 30 80

500k 5 10 50 200
250k 10 18 89 300
125k 19 36 200 500
50k 46 90 500 2000
20k 200 300 2000 3000
10k 300 500 3000 6000

Event Transmission

The Event Transmission type, only transmits 1/0O data messages when an "event"
occurs on the source node (either the XMP or the 1/0 node) to change the I/O data.
The event that forces the transmission is either a new state of an input that is
detected on an I/O node or a new output state that is commanded on the XMP.

Event m N Data

v

Producer
Consumer

The advantage of this type of messaging is that short reaction times are attainable,
but this is accomplished at the expense of variable network traffic, and the possibility
of saturating the network. In many cases, the reaction time is not significant in relation
to other time delays in the system (ex: the user's application or delays in task
switching).

Inhibit Time

If the source node's events occur at a very fast rate, the number of messages
generated can swamp the network and consequently block out other messages. To

file://IC|/htmlhelp/Software-MPI/docs/CAN/Topics/trans_type.htm (2 of 3) [7/27/2005 10:51:54 AM]

CAN Transmission Types

prevent an excess of messages, nodes can optionally support inhibit times for their
transmit PDOs. This value defines the minimum time between two successive PDO

messages.

The inhibitTime field within the MEICanConfig structure allows the user to specify the
period (in milliseconds) that all nodes on the network will use. A reasonable inhibit
time is half a cyclic period.

file:///IC|/htmlhelp/Software-MPI/docs/CAN/Topics/trans_type.htm (3 of 3) [7/27/2005 10:51:54 AM]

CAN Node Health

CAN Node Health

All networks including CAN are vulnerable to faults such as breaks in the bus wiring or
loss of power by some of the nodes. CANopen defines two methods for the master
node (the XMP in our case) to periodically check the presence of nodes on the
network-node guarding and heart beating.

Using these services the XMP can monitor the health of the communications to each
of the nodes. The current health of each node is reported in the live field of the
MEICANNodeStatus structure.

Mode Guarding Failed
OR
Heart Beating Failed

It is mandatory for a node to either support the node guarding or heart beating
protocols, or to support both. The heartbeat protocol has recently been introduced to
CANOpen (in June 1999), and will probably NOT be supported on many nodes, but its
adoption is recommended for all new nodes. The XMP's implementation will operate
with either protocol and will automatically detect the protocol that each node supports
and then use the most appropriate protocol for the CAN network. The healthType field
of the MEICanNodelnfo structure reports the health checking protocol being used with
each node.

Node Guarding protocol

The Node Guarding protocol has the master sending an RTR message to all nodes
on the network and checks to see whether a response is received from each of the
nodes.

file://IC|/htmlhelp/Software-MPI1/docs/CAN/Topics/nd_health.htm (1 of 3) [7/27/2005 10:51:55 AM]

CAN Node Health

Mode Guard MNode Guard

Time Time
-« »

MMT
Master | | A | | A
Mode 1 does not reply Master has not _/
| | to this Guard Request | | received guard
FespOnse $o
| \ | guarding fails
Mode 1 \ +
| I
Guard Guard Guard | Guard
Request Response Request Response
Mode 2 L4 y

Heart Beating protocol

In the Heart Beating protocol, each node periodically broadcasts a heartbeat
message. The period between transmitting the heartbeat messages is half the health
period. If the XMP does not receive a message within a specific time window, it
generates a heartbeat error for that node.

The advantage of the Heart Beating protocol over the Node Guarding protocol is that
the number of messages is reduced in half, thereby freeing up bandwidth for other

messages.
Heartbeat Consumer
Time
< >
Heartbeat Consumer
| Time
i "
I i
MMT
Master A
Master has not received
Heartbeat so heartheating fails
Heartbeat Heartbeat
Mode n

-
L 4

Heartheat Praducer
Time

Health Period

The healthPeriod field of the MEICanConfig structure allows the user to specify the

Node Guard and Heartbeat times for the health protocols according to the following
table. The same period is used for all nodes.

Node Health Times
Protocol Times Value

Node Guard Time healthPeriod

file://IC|/htmlhelp/Software-MPI1/docs/CAN/Topics/nd_health.htm (2 of 3) [7/27/2005 10:51:55 AM]

CAN Node Health

Heartbeat Producer Time healthPeriod / 2

Heatbeat Consumer Time healthPeriod

For most applications it is recommended that the healthPeriod should be set to ten
times the cyclic period.

file://IC|/htmlhelp/Software-MPI1/docs/CAN/Topics/nd_health.htm (3 of 3) [7/27/2005 10:51:55 AM]

CAN Node Numbers

CAN Node Numbers

Each node on the network must have a unique node number, in the range of 1 to 127.
The node number is commonly set with a bank of DIP switches on each node. If two
nodes are given the same node number, network errors are generated and
unpredictable problems will be encountered. The node number of the XMP can be
changed from the factory default of 1 using the meiCanConfigSet function.

file://IC|/htmlhelp/Software-MPI/docs/CAN/Topics/nd_num.htm [7/27/2005 10:51:55 AM]

CAN Hardware

CAN Hardware

CANOpen is a serial network that uses a bus topology. The CANOpen bus always
contains two signal wires, CAN+ and CAN-, which carry the differential serial data and
a ground (GND). It is also common for most CANOpen nodes to provide a shield
connection.

Similar to most industrial buses, the signal wires need to be terminated. CANOpen
requires a 120ohm resistor at both ends of the main bus. If these resistors are not
fitted, the network will not function properly. Some node suppliers build the
terminating resistor into the node and provide a jumper or switch to enable it. You will
need to check your nodes' datasheets for the inclusion of a terminating resistor. The
XMP does not have any terminating resistors.

CAN+

120 Ohms
120 Ohms

| CANM- |

GMND

| | I

/O Noade /O MNade /O Node

For pinout information, go to the XMP's CAN D-9 connector page.

A CANOpen node either has an opto-isolated or non-isolated interface. The use of
optoisolation is primarily provided as an EMC countermeasure and is used to cope
with potential differences in the ground. These effects are more pronounced for large
machines and cable lengths. Therefore, the use of opto-couplers is recommended for
bus lengths greater that 200m. The disadvantage of opto-couplers is that they reduce
the maximum permissible bus length for a given bit rate.

The XMP CAN interface is available with or without opto-isolation. This option needs
to be specified at the time your XMP is ordered.

Most types of nodes require a separate power supply to drive the local logic and the
I/O interfaces. For nodes that use opto-isolated interfaces, a separate supply of +7 to
24V needs to be provided to power the interface circuitry. The user must also supply
an external 24V to the XMP (CAN_V+) if the opto-isolated interface option is being
used.

file://IC|/htmlhelp/Software-MPI/docs/CAN/Topics/hardware.htm (1 of 2) [7/27/2005 10:51:59 AM]

file:///C|/htmlhelp/Hardware/SynqNet-XMP/can.htm

CAN Hardware

Each node on the network must have a unique node number, in the range of 1 to 127.
The node number is commonly set with a bank of DIP switches on each node. If two
nodes are given the same node number, network errors are generated and
unpredictable problems will be encountered. The node number of the XMP can be
changed from the factory default of 1 using the meiCanConfigSet function.

In order for all nodes to communicate they must all use the same bit rate. Normally
the bit rate that a node uses is set by DIP switches. If all of the nodes on a CANOpen
network do not use the same bit rate then the whole network or some of the nodes on
the network will not work properly. The bit rate of the XMP is set via software
meiCanConfigSet. See also CAN Bit Rate.

file://IC|/htmlhelp/Software-MPI/docs/CAN/Topics/hardware.htm (2 of 2) [7/27/2005 10:51:59 AM]

CAN Emergency Messages

CAN Emergency Messages

Every type of CANOpen node can transmit an emergency message. These messages
are designed to report errors and warnings, as well as fatal problems on a node. The
contents of these emergency messages are very dependent upon the node
manufacturer and node type. To interpret this data, you will need to refer to the node
manufacture's data. If an emergency message is generated by a node, the event
handling scheme described in the events section below allows the user's application
to receive the emergency message data.

file:///C|/htmlhelp/Software-MPIl/docs/CAN/Topics/emergency_msg.htm [7/27/2005 10:52:00 AM]

CAN Handling Events

CAN Handling Events

The CAN interface on the XMP generates many different types of asynchronous
events such as:

. achangeinthe XMP's bus state
. achangein anode's health

. achangein the state of an input node's analog or digital inputs
. anemergency message is transmitted by a node

. aboot message is transmitted by a node

. alost message is detected by the XMP CAN firmware

The events above have been appended to the standard MPI event handling scheme
in order to provide the user the ability to respond to these events. The diagram below
shows an overview of how events are relayed to the user's application.

Liser Application
© meinotifyEventwait)

Motify

Objects
Mask

'\

Event Manager

e

Mask

0,/

©

XMF

file://IC|/htmlhelp/Software-MPI/docs/CAN/Topics/handle_evts.htm (1 of 2) [7/27/2005 10:52:00 AM]

CAN Handling Events

=

The CANOpen firmware detects one of the CAN events.

2. Thereisamask within the XMP firmware that allows only a specified set of eventsto
reach the host. This mask isinterrogated and modified with the mei CanEventNotifyGet
and mei CanEventNotifySet functions.

3. Likeall other eventsin the MPI, the user must install an Event Manager on the host. You
will find the serviceCreate and serviceDel ete functions from apputils convenient for
installing an Event Manager.

4. For each thread that needs to know about CAN events, the user will need to create a
notify object, specifying amask for the required events.

5. The user's application can use the mpiNotifyEventWait function to either poll or wait for
a CAN event to be generated. A valid event returned from mpiNotifyEventWait may
also contain extra fields of information relevant to the event produced. (ex: the new bus
state or node number).

file://IC|/htmlhelp/Software-MPI1/docs/CAN/Topics/handle_evts.htm (2 of 2) [7/27/2005 10:52:00 AM]

file:///C|/htmlhelp/Software-MPI/docs/Notify/Method/evtwt1.htm

CAN Hardware on the XMP

CAN Hardware on the XMP

In the example below, the XMP uses a dedicated CAN processor to handle the
network. This ensures that the motion will not be affected by the CAN network. The
XMP operates as a master node on the network with all the 1/O nodes being slaves.
This arrangement implies that there may only be one XMP on any CAN Network.

Hast
Usear

Application
|

MPI CAN
Object

Bl Shared

Memiory

CAM CAM Bus

Processor |

/O Node /O Node

The XMP operates as a master node on the network with all the 10 nodes being
slaves. This arrangement implies that there may only be one XMP on any CAN

Network.

file://IC|/htmlhelp/Software-MPI/docs/CAN/Topics/can_hw_on_xmp.htm [7/27/2005 10:52:01 AM]

	CAN object
	Methods
	meiCanConfigGet
	meiCanConfigSet
	meiCanNodeConfigGet
	meiCanNodeConfigSet
	meiCanFlashConfigGet
	meiCanFlashConfigSet
	meiCanNodeInfo
	meiCanNodeStatus
	meiCanStatus
	meiCanEventNotifyGet
	meiCanEventNotifySet
	meiCanCreate
	meiCanDelete
	meiCanValidate
	meiCanVersion
	meiCanCommand
	meiCanNodeFlashConfigGet
	meiCanNodeFlashConfigSet
	meiCanNodeAnalogIn
	meiCanNodeAnalogOutSet
	meiCanNodeAnalogOutGet
	meiCanNodeDigitalIn
	meiCanNodeDigitalOutSet
	meiCanNodeDigitalOutGet
	meiCanFirmwareDownload
	meiCanFirmwareErase
	meiCanFirmwareUpload
	meiCanMemory
	meiCanMemoryGet
	meiCanMemorySet
	meiCanInit
	meiCanControl
	meiCanNumber

	Data Types
	MEICanBitRate
	MEICanBusState
	MEICanCallback
	MEICanCommand
	MEICanCommandType
	MEICanConfig
	MEICanHealthType
	MEICanMessage
	MEICanNMTState
	MEICanNodeConfig
	MEICanNodeInfo
	MEICanNodeType
	MEICanNodeInfoVendor
	MEICanNodeInfoProductCode
	MEICanNodeStatus
	MEICanStatus
	MEICanTransmissionType
	MEICanVersion

	Constants
	MEICanNetworkMAX

	Topics
	CAN Bit Rate
	CAN Bus State
	CAN Transmission Types
	CAN Node Health
	CAN Node Numbers
	CAN Hardware
	CAN Emergency Messages
	CAN Handling Events
	CAN Hardware on the XMP

