
Recorder Objects

Recorder Objects
Introduction

A Recorder object provides a mechanism to collect and buffer any data in the
controller's memory. After a recorder is configured and started, the controller copies the
data from the specified addresses to a local buffer every "N" samples. Later, the host
can collect the data by polling or via interrupt-based events.

The controller supports up to 32 data recorders, which can collect data from up to a total
of 32 addresses. The buffers can be dynamically allocated. A larger data recorder buffer
may be required for higher sample rates, slow host computers, when running via
client/server, or when a large number of data fields are being recorded.

A recorder can be started or stopped from the host application or from the controller by
configuring a data recorder trigger. When the trigger conditions are met, the controller
will automatically start or stop a data recorder. This is very useful for logging relevant
variables during the period preceding a fault or error. Normally, the recorder stops
collecting data when the buffer is full. It can also be configured to continuously collect
data, overwriting the previous data until it is commanded to stop. This is useful for
trapping a recent history of controller data.

When using data recorders, make sure to enable enough recorder objects and buffer
memory with mpiControlConfigSet(.). Then, configure the recorders with
mpiRecorderRecordConfig(.) or mpiRecorderConfigSet(.), and start recording with
mpiRecorderStart(.). Data can then be collected with mpiRecorderRecordGet(.).

It is possible to create a recorder object and not delete it, leaving the resources for the
recorder occupied, but forgotten about (abandoned). It is most common to run into this
situation when using an index of -1 for the recorder. When developing a program and
running it in the debugger, it is common for the developer to exit the program without
letting the program clean up its recorder resources. To see how to handle this situation
programmatically, please see recorderinuse.c.

| Buffer Size |

Methods

Create, Delete, Validate Methods
 mpiRecorderCreate Create Recorder object

 mpiRecorderDelete Delete Recorder object

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/rec_out.htm (1 of 3) [1/10/2005 12:10:05 PM]

file://///Pisces/Departments/Documents/Software-MPI/apps/c_out/recorderinuse.c.html

Recorder Objects

 mpiRecorderValidate Validate Recorder object

Configuration and Information Methods
 mpiRecorderConfigGet Get Recorder's configuration

 mpiRecorderConfigSet Set Recorder's configuration

 mpiRecorderRecordConfig Configure type of data record that Recorder will capture

 mpiRecorderStatus Get status of Recorder

Event Methods
 mpiRecorderEventNotifyGet Get event mask of events for which host notification has been requested

 mpiRecorderEventNotifySet Set event mask of events for which host notification will be requested

 mpiRecorderEventReset Reset the events specified in event mask that are generated by Recorder

Action Methods
 mpiRecorderRecordGet Get data records from Recorder

 mpiRecorderStart Start recording data records using Recorder

 mpiRecorderStop Stop recording data records using Recorder

Memory Methods
 mpiRecorderMemory Get address to Recorder's memory

 mpiRecorderMemoryGet Copy data from Recorder memory to application memory

 mpiRecorderMemorySet Copy data from application memory to Recorder memory

Relational Methods
 mpiRecorderControl Return handle of Control object associated with Recorder

 mpiRecorderNumber

Data Types

 MPIRecorderConfig / MEIRecorderConfig

 MPIRecorderMessage

 MPIRecorderRecord / MEIRecorderRecord

 MEIRecorderRecordAxis

 MEIRecorderRecordFilter

 MPIRecorderRecordPoint

 MPIRecorderRecordType / MEIRecorderRecordType

 MPIRecorderStatus

 MEIRecorderTrace

 MEIRecorderTrigger

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/rec_out.htm (2 of 3) [1/10/2005 12:10:05 PM]

Recorder Objects

 MEIRecorderTriggerCondition

 MEIRecorderTriggerIndex

 MEIRecorderTriggerType

 MEIRecorderTriggerUser

Constants

 MPIRecorderADDRESS_COUNT_MAX

 MEIRecorderMAX_AXIS_RECORDS

 MEIRecorderMAX_FILTER_RECORDS

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/rec_out.htm (3 of 3) [1/10/2005 12:10:05 PM]

mpiRecorderCreate

mpiRecorderCreate

Declaration

 MPIRecorder mpiRecorderCreate(MPIControl control,

 long number);

 Required Header: stdmpi.h

Description

mpiRecorderCreate creates a Recorder object identified by number, which is
associated with a control object. RecorderCreate is the equivalent of a C++
constructor.

The recorder number specifies which recorder to create. The valid range for the
number parameter is -1 to the controller's recordCount
(MPIControlConfig.recorderCount). Use a recorder number of -1 to specify the
recorder number as the next available recorder.

See MPIControlConfig{.} for details. If the recorder is not enabled or is already in use
(another process has called mpiRecorderCreate(.) with the same number parameter),
mpiRecorderCreate(.) will return an invalid handle causing subsequent
mpiRecorderValidate(.) calls to fail.

It is possible to create a recorder object and not delete it, leaving the resources for the
recorder occupied, but forgotten about (abandoned). It is most common to run into
this situation when using an index of -1 for the recorder. When developing a program
and running it in the debugger, it is common for the developer to exit the program
without letting the program clean up its recorder resources. To see how to handle this
situation programmatically, please see recorderinuse.c.

control a handle to a Control object.

number An index to the controller's data recorder. If (-1) is specified, the next available
recorder object handle will be returned. The valid range is from -1 (next available
recorder) to the controller's recordCount - 1.

When using (-1), make sure to delete the recorder object to free it for other
applications. If the recorder object is not freed, it will not be accessible to
another application until the controller is reset.

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/create1.htm (1 of 2) [1/10/2005 12:10:06 PM]

file://///Pisces/Departments/Documents/Software-MPI/docs/Control/cnl_out.htm
file://///Pisces/Departments/Documents/Software-MPI/apps/c_out/recorderinuse.c.html

mpiRecorderCreate

Return Values

handle to a Recorder object

MPIHandleVOID if the Recorder object could not be created

See Also

mpiRecorderDelete | mpiRecorderValidate | MPIControlConfig | mpiControlConfigGet
| mpiControlConfigSet

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/create1.htm (2 of 2) [1/10/2005 12:10:06 PM]

file://///Pisces/Departments/Documents/Software-MPI/docs/Control/DataType/cf3.htm
file://///Pisces/Departments/Documents/Software-MPI/docs/Control/Method/cfget1.htm
file://///Pisces/Departments/Documents/Software-MPI/docs/Control/Method/cfset1.htm

mpiRecorderDelete

mpiRecorderDelete

Declaration

 long mpiRecorderDelete(MPIRecorder recorder)

 Required Header: stdmpi.h

Description

mpiRecorderDelete deletes a Recorder object and invalidates its handle (recorder).
RecorderDelete is the equivalent of a C++ destructor.

It is possible to create a recorder object and not delete it, leaving the resources for the
recorder occupied, but forgotten about (abandoned). It is most common to run into
this situation when using an index of -1 for the recorder. When developing a program
and running it in the debugger, it is common for the developer to exit the program
without letting the program clean up its recorder resources. To see how to handle this
situation programmatically, please see recorderinuse.c.

control a handle to a Control object.

number An index to the controller's data recorder. If (-1) is specified, the next available
recorder object handle will be returned. The valid range is from -1 (next available
recorder) to the controller's recordCount - 1.

When using (-1), make sure to delete the recorder object to free it for other
applications. If the recorder object is not freed, it will not be accessible to
another application until the controller is reset.

Return Values

MPIMessageOK
if RecordeDelete successfully deletes a Recorder object and invalidates its
handle

See Also

mpiRecorderCreate | mpiRecorderValidate

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/delete1.htm [1/10/2005 12:10:06 PM]

file://///Pisces/Departments/Documents/Software-MPI/apps/c_out/recorderinuse.c.html

mpiRecorderValidate

mpiRecorderValidate

Declaration

long mpiRecorderValidate(MPIRecorder recorder)

 Required Header: stdmpi.h

Description

mpiRecorderValidate validates the Recorder object and its handle. RecorderValidate
should be called immediately after an object is created.

It is possible to create a recorder object and not delete it, leaving the resources for the
recorder occupied, but forgotten about (abandoned). It is most common to run into
this situation when using an index of -1 for the recorder. When developing a program
and running it in the debugger, it is common for the developer to exit the program
without letting the program clean up its recorder resources. To see how to handle this
situation programmatically, please see recorderinuse.c.

 recorder a handle to a Recorder object

Return Values

MPIMessageOK if Recorder is a handle to a valid object.

MPIRecorderMessageNOT_ENABLED
if the specified recorder number has not been
enabled in the controller.

MPIRecorderMessageNO_RECORDERS_AVAIL
if the specified recorder number is (-1) and
there are no more recorders available on the
controller.

See Also

mpiRecorderCreate | mpiRecorderDelete

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/valid1.htm [1/10/2005 12:10:07 PM]

file://///Pisces/Departments/Documents/Software-MPI/apps/c_out/recorderinuse.c.html

mpiRecorderConfigGet

mpiRecorderConfigGet

Declaration

 long mpiRecorderConfigGet(MPIRecorder recorder,

 MPIRecorderConfig *config,

 void *external)

 Required Header: stdmpi.h

Description

mpiRecorderConfigGet gets a Recorder's (recorder) configuration and writes it into
the structure pointed to by config, and also writes it into the implementation-specific
structure pointed to by external (if external is not NULL).

The Recorder's configuration information in external is in addition to the Recorder's
configuration information in config, i.e, the configuration information in config and in
external is not the same information. Note that config or external can be NULL (but
not both NULL).

Remarks

external either points to a structure of type MEIRecorderConfig{} or is NULL.

Return Values

MPIMessageOK
if RecorderConfigGet successfully writes the Recorder's configuration to
the structure(s)

See Also

MPIRecorderConfig | mpiRecorderConfigSet

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/cfget1.htm [1/10/2005 12:10:07 PM]

mpiRecorderConfigSet

mpiRecorderConfigSet

Declaration

 long mpiRecorderConfigSet(MPIRecorder recorder,

 MPIRecorderConfig *config,

 void *external)

 Required Header: stdmpi.h

Description

mpiRecorderConfigSet sets a Recorder's (recorder) configuration using data from
the structure pointed to by config, and also using data from the implementation-
specific structure pointed to by external (if external is not NULL).

The Recorder's configuration information in external is in addition to the Recorder's
configuration information in config, i.e, the configuration information in config and in
external is not the same information. Note that config or external can be NULL (but
not both NULL).

Remarks

external either points to a structure of type MEIRecorderConfig{} or is NULL.

Return Values

MPIMessageOK
if RecorderConfigSet successfully sets the Recorder's configuration using
data from the structure(s)

See Also

MEIRecorderConfig | mpiRecorderConfigGet

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/cfset1.htm [1/10/2005 12:10:07 PM]

mpiRecorderRecordConfig

mpiRecorderRecordConfig

Declaration

 long mpiRecorderRecordConfig(MPIRecorder recorder,

 MPIRecorderRecordType type,

 long count,
 void *handle)

 Required Header: stdmpi.h

Description

mpiRecorderRecordConfig configures the type (type) of record that a Recorder
(recorder) will capture.

If "type" is Then

MPIRecorderRecordTypePOINT count data points will be recorded, and handle
points to an array of count controller addresses

MEIRecorderRecordTypeAXIS
count records of type
MPIRecorderRecordAxis{} will be recorded, and
handle points to an array of count Axis handles

MEIRecorderRecordTypeFILTER

count records of type
MPIRecorderRecordFilter{} will be recorded, and
handle points to an array of count Filter
handles

Return Values

MPIMessageOK
if RecorderRecordConfig successfully configures the type of record that the
Recorder will capture

See Also

MPIRecorderRecordAxis | MPIRecorderRecordFilter

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/reccf1.htm [1/10/2005 12:10:07 PM]

mpiRecorderStatus

mpiRecorderStatus

Declaration

long mpiRecorderStatus(MPIRecorder recorder,

 MPIRecorderStatus *status,

 void *external)

 Required Header: stdmpi.h

Description

mpiRecorderStatus gets the status of the Recorder (recorder) and writes it into the
structure pointed to by status, and also writes it into the implementation-specific
structure pointed to by external (if external is not NULL).

Remarks

external should always be set to NULL.

recorder a handle to a Recorder object

*status a pointer to Recorder's status structure

*external a pointer to an implementation-specific structure

Return Values

MPIMessageOK
if RecorderStatus successfully gets the Recorder's status and
writes it into the structure(s)

MPIMessageARG_INVALID if the status pointer is NULL.

See Also

MPIRecorderStatus

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/sts1.htm [1/10/2005 12:10:08 PM]

mpiRecorderEventNotifyGet

mpiRecorderEventNotifyGet

Declaration

 long mpiRecorderEventNotifyGet(MPIRecorder recorder,

 MPIEventMask *eventMask,

 void *external)

 Required Header: stdmpi.h

Description

mpiRecorderEventNotifyGet writes the event mask into the structure pointed to by
eventMask, and also writes it into the implementation-specific structure pointed to by
external (if external is not NULL). (The event mask specifies the event type(s)
generated by a Recorder (recorder), for which host notification has been requested.)

The event mask information in external is in addition to the event mask information in
eventMask, i.e, the mask information in eventMask and in external is not the same
mask information. Note that eventMask or external can be NULL (but not both
NULL).

Remarks

external either points to a structure of type MEIEventNotifyData{} or is NULL. An
MEIEventNotifyData{} structure is an array of firmware addresses. The contents of
these firmware addresses are placed into the MEIEventStatusInfo{} structure (which
contains all events generated by this Recorder object).

Return Values

MPIMessageOK
if RecorderEventNotifyGet successfully writes the event mask to the
structure(s)

See Also

MEIEventNotifyData | MEIEventStatusInfo | mpiRecorderEventNotifySet

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/evtnfyget1.htm [1/10/2005 12:10:08 PM]

file://///Pisces/Departments/Documents/Software-MPI/docs/EventMask/DataType/msk1.htm
file://///Pisces/Departments/Documents/Software-MPI/docs/Event/DataType/nfydta2.htm
file://///Pisces/Departments/Documents/Software-MPI/docs/Event/DataType/stsinf2.htm

mpiRecorderEventNotifySet

mpiRecorderEventNotifySet

Declaration

 long mpiRecorderEventNotifySet(MPIRecorder recorder,

 MPIEventMask eventMask,

 void *external)

 Required Header: stdmpi.h

Description

mpiRecorderEventNotifySet requests host notification of the event(s) specified by
eventMask and generated by a Recorder (recorder), and also generated by the
implementation-specific structure pointed to by external (if external is not NULL).

The events in external are in addition to the events in recorder, i.e, the events in
recorder and in external are not necessarily the same events. Note that recorder or
external can be NULL (but not both NULL).

Event notification is enabled for the event types specified in eventMask. eventMask
is a bit mask generated by the logical OR of the MPIEventMask bits that are
associated with the desired MPIEventType values. Event notification is disabled for
event types not specified in eventMask.

The mask of event types (generated by a Recorder object) consists of
MEIEventMaskRECORDER_FULL and MEIEventMaskRECORDER_DONE.

To Use "eventMask"

Enable host notification of all
Recorder events MPIEventMaskALL

Disable host notification of all
Recorder events MPIEventTypeNONE

Remarks

external either points to a structure of type MEIEventNotifyData{} or is NULL. An
MEIEventNotifyData{} structure is an array of firmware addresses. The contents of
these firmware addresses are placed into the MEIEventStatusInfo{} structure (which
contains all events generated by this Recorder object).

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/evtnfyset1.htm (1 of 2) [1/10/2005 12:10:08 PM]

file://///Pisces/Departments/Documents/Software-MPI/docs/EventMask/DataType/msk1.htm

mpiRecorderEventNotifySet

Return Values

MPIMessageOK
if RecorderEventNotifySet successfully requests host notification of the
event(s) as specified by the structure(s)

See Also

MEIEventMaskRECORDER | MEIEventNotifyData | MEIEventStatusInfo
mpiRecorderEventNotifyGet

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/evtnfyset1.htm (2 of 2) [1/10/2005 12:10:08 PM]

file://///Pisces/Departments/Documents/Software-MPI/docs/EventMask/Method/rec4.htm
file://///Pisces/Departments/Documents/Software-MPI/docs/Event/DataType/nfydta2.htm
file://///Pisces/Departments/Documents/Software-MPI/docs/Event/DataType/stsinf2.htm

mpiRecorderEventReset

mpiRecorderEventReset

Declaration

 long mpiRecorderEventReset(MPIRecorder recorder,

 MPIEventMask eventMask)

 Required Header: stdmpi.h

Description

mpiRecorderEventReset resets the event(s) specified in eventMask and generated
by a Recorder (recorder). Your application should call RecorderEventReset only after
one or more latchable events have occurred.

Return Values

MPIMessageOK
if RecorderEventReset successfully resets the event(s) that are specified in
eventMask and generated by a Recorder

See Also

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/evtrst1.htm [1/10/2005 12:10:09 PM]

file://///Pisces/Departments/Documents/Software-MPI/docs/EventMask/DataType/msk1.htm

mpiRecorderRecordGet

mpiRecorderRecordGet

Declaration

 long mpiRecorderRecordGet(MPIRecorder recorder,

 long countMax,
 MPIRecorderRecord *record,

 long *count)

 Required Header: stdmpi.h

Description

mpiRecorderRecordGet obtains a Recorder's (recorder) data records. The record
type must have been configured previously, by a prior call to
mpiRecorderRecordConfig(...).

RecorderRecordGet gets a maximum of countMax records and writes them into the
location pointed to by record (the location must be large enough to hold them).
RecorderRecordGet also writes the actual number of records that were obtained to
the location pointed to by count.

If the recorder data buffer is full and recording is enabled, recording will be temporarily
disabled while either all or countMax records are obtained, whichever is less. Any
records not obtained will be lost.

Return Values

MPIMessageOK if RecorderRecordGet successfully gets the data records

See Also

mpiRecorderRecordConfig

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/recget1.htm [1/10/2005 12:10:09 PM]

mpiRecorderStart

mpiRecorderStart

Declaration

long mpiRecorderStart(MPIRecorder recorder,

 long count); /* -1 => continuous,
 >0 => # of records */

 Required Header: stdmpi.h

Description

mpiRecorderStart commands the controller to begin recording data records. Before
starting a recorder, it must be configured with mpiRecorderRecordConfig(.) or
mpiRecordConfigGet/Set(.).

recorder a handle to a Recorder object

count The number of data records to record. If (-1) is specified, the data recorder will
continuously record until the buffer is full. If the host is retrieving data from the
buffer faster than the controller can fill the buffer, the controller will continuously
copy data to the buffer. The valid range is from -1 (continuous recording) to the
maximum number of records available in the data recorder buffer.

Return Values

MPIMessageOK if the data recorder successfully begins to record data.

MPIRecorderMessageSTARTED if the data recorder is already running.

See Also

mpiRecorderRecordConfig | mpiRecorderStop | mpiRecorderConfigGet |
mpiRecorderConfigSet | mpiControlConfigGet | mpiControlConfigSet

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/strt1.htm [1/10/2005 12:10:09 PM]

file://///Pisces/Departments/Documents/Software-MPI/docs/Control/Method/cfget1.htm
file://///Pisces/Departments/Documents/Software-MPI/docs/Control/Method/cfset1.htm

mpiRecorderStop

mpiRecorderStop

Declaration

long mpiRecorderStop(MPIRecorder recorder)

 Required Header: stdmpi.h

Description

mpiRecorderStop instructs a Recorder (recorder) to stop recording data records.

 recorder a handle to a Recorder object

Return Values

MPIMessageOK if RecorderStop successfully stops recording data records

MPIRecorderMessageSTOPPED

This means the the recorder was already stopped when
mpiRecorderStop was called. This is a warning, not an
error. This can be ignored if the user does not have some
reason for why the recorder must be running at this point.

Sample Code

/*
 Look for the warning code when the recorder is already stopped.
 This is usually not considered a bad thing (error).
*/
returnValue = mpiRecorderStop(recorder);
if(returnValue == MPIRecorderMessageSTOPPED)
{
returnValue = MPIMessageOK;
}
msgCHECK(returnValue);

See Also

mpiRecorderStart

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/sto1.htm (1 of 2) [1/10/2005 12:10:09 PM]

mpiRecorderMemory

mpiRecorderMemory

Declaration

 long mpiRecorderMemory(MPIRecorder recorder,

 void **memory)

 Required Header: stdmpi.h

Description

mpiRecorderMemory writes an address to the contents of memory. An address can
be used to access a Recorder's (recorder) memory. An address calculated from it
can be passed as the src argument to mpiRecorderMemoryGet(...) and as the dst
argument to mpiRecorderMemorySet(...).

Return Values

MPIMessageOK
if RecorderMemory successfully writes the Recorder's memory address to
the contents of memory

See Also

mpiRecorderMemoryGet | mpiRecorderMemorySet

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/mem1.htm [1/10/2005 12:10:10 PM]

mpiRecorderMemoryGet

mpiRecorderMemoryGet

Declaration

 long mpiRecorderMemoryGet(MPIRecorder recorder,

 void *dst,
 void *src,
 long count)

 Required Header: stdmpi.h

Description

mpiRecorderMemoryGet copies count bytes of a Recorder's (recorder) memory
(starting at address src) to application memory (starting at address dst).

Return Values

MPIMessageOK
if RecorderMemoryGet successfully copies data from Recorder memory to
application memory

See Also

mpiRecorderMemory | mpiRecorderMemorySet

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/memget1.htm [1/10/2005 12:10:10 PM]

mpiRecorderMemorySet

mpiRecorderMemorySet

Declaration

 long mpiRecorderMemorySet(MPIRecorder recorder,

 void *dst,
 void *src,
 long count)

 Required Header: stdmpi.h

Description

mpiRecorderMemorySet copies count bytes of application memory (starting at
address src) to a Recorder's (recorder) memory (starting at address dst).

Return Values

MPIMessageOK
if RecorderMemorySet successfully copies data from application memory to
Recorder memory

See Also

mpiRecorderMemory | mpiRecorderMemoryGet

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/memset1.htm [1/10/2005 12:10:10 PM]

mpiRecorderControl

mpiRecorderControl

Declaration

 MPIControl mpiRecorderControl(MPIRecorder recorder)

 Required Header: stdmpi.h

Description

mpiRecorderControl returns a handle to the motion controller (Control object) that a
Recorder (recorder) is associated with.

Return Values

handle to a Control object that a Recorder is associated with

MPIHandleVOID if the Recorder object is invalid

See Also

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/cnl1.htm [1/10/2005 12:10:10 PM]

file://///Pisces/Departments/Documents/Software-MPI/docs/Control/cnl_out.htm

mpiRecorderNumber

mpiRecorderNumber

Declaration

long mpiRecorderNumber(MPIRecorder recorder,

 long *number);

 Required Header: stdmpi.h

Description

mpiRecorderNumber reads the index of a Recorder object and writes it into the
contents of a long pointed to by number. Each data recorder associated with a
controller is indexed by a number (0, 1, 2, etc.).

recorder a handle to a Recorder object.

*number a pointer to the index of a Recorder object.

Return Values

MPIMessageOK
if RecorderNumber successfully gets the index of a data
recorder and writes it into the contents of a long pointed to
by number.

MPIMessageARG_INVALID See description.

MPIMessageHANDLE_INVALID See description.

See Also

mpiRecorderCreate

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Method/num1.htm [1/10/2005 12:10:11 PM]

file://///Pisces/Departments/Documents/Software-MPI/docs/error_descriptions.htm#1
file://///Pisces/Departments/Documents/Software-MPI/docs/error_descriptions.htm#3

MPIRecorderConfig / MEIRecorderConfig

MPIRecorderConfig / MEIRecorderConfig

Definition: MPIRecorderConfig

 typedef struct MPIRecorderConfig {
 long period; /* collect 1 record every `period` milliseconds */
 long highCount; /* >0 => record count to trigger high buffer */
 long bufferWrap; /* TRUE/FALSE */

 long addressCount; /* number of data point addresses in address[] */
 void *address[MPIRecorderADDRESS_COUNT_MAX];

} MPIRecorderConfig;

Description

MPIRecorderConfig structure specifies the configurations for a data recorder. It
configures the sampling period, the buffer high event level, whether the buffering
should wrap around, and a list of controller addresses to record.

period The number of controller samples between successive data recorder
acquisitions. A value of zero or one means the data recorder will acquire data
every sample. A value of 2 means every other sample, 3 means every 3rd
sample, etc. The valid range is 0 to 32767.

highCount The number of buffered records until a MPIEventTypeRECORDER_HIGH
status/event is generated. The valid range is 1 to the recorder buffer size
configured by mpiControlConfigSet(.).

bufferWrap Data recorder buffer rollover. A value of TRUE enables the buffer rollover,
FALSE (default) disables the buffer rollover. When the bufferWrap is
disabled, the controller will stop collecting data when the buffer is full. When
bufferWrap is enabled, the controller will continuously collect data after the
buffer is full, overwriting any previously collected data. The bufferWrap
should be enabled if your application only wants to retrieve the last buffer of
data after the data recorder is stopped. Most applications should set the
bufferWrap to FALSE.

addressCount The number of controller addresses in the address array.

*address An array of controller memory addresses to be recorded.

Definition: MEIRecorderConfig

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/cf3.htm (1 of 2) [1/10/2005 12:10:11 PM]

file://///Pisces/Departments/Documents/Software-MPI/docs/Control/Method/cfset1.htm

MPIRecorderConfig / MEIRecorderConfig

 typedef struct MEIRecorderConfig {
 MEIRecorderTrigger trigger[MEIRecorderTriggerIndexLAST];

} MEIRecorderConfig;

Description

MEIRecorderConfig specifies the configurations for the controller's data recorder
triggers.

A data recorder can be started or stopped from the host application with
mpiRecorderStart/Stop(.) or from the controller by configuring a data recorder trigger.
When the trigger conditions are met, the controller will automatically start or stop a
data recorder.

 trigger An array of data recorder trigger configuration structures.

See Also

mpiRecorderConfigGet | mpiRecorderConfigSet | mpiRecorderStart |
mpiRecorderStop

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/cf3.htm (2 of 2) [1/10/2005 12:10:11 PM]

MPIRecorderMessage

MPIRecorderMessage

Definition

typedef enum {

 MPIRecorderMessageRECORDER_INVALID,
 MPIRecorderMessageSTARTED,
 MPIRecorderMessageSTOPPED,
 MPIRecorderMessageNOT_CONFIGURED,
 MPIRecorderMessageNO_RECORDERS_AVAIL,
 MPIRecorderMessageNOT_ENABLED,
 MPIRecorderMessageRUNNING,
} MPIRecorderMessage;

Description

MPIRecorderMessage lists the error messages returned by the Recorder module.

MPIRecorderMessageRECORDER_INVALID

The recorder object is not valid. This message code is returned by a recorder method if the recorder
object handle is not valid. This problem can be caused by a failed mpiRecorderCreate(.). To prevent
this problem, check your recorder objects after creation by using mpiRecorderValidate(.).

MPIRecorderMessageSTARTED

The data recorder is already running. This message code is returned by mpiRecorderStart(.) if the
data recorder has already been started. If this is a problem, call mpiRecorderStop(.) to stop the data
recorder or wait for the recorder to collect the number of specified records and stop.

MPIRecorderMessageSTOPPED

The data recorder is not running. This message code is returned by mpiRecorderStop(.) if the data
recorder has already been stopped. If this is a problem, call mpiRecorderStart(.) to start the data
recorder.

MPIRecorderMessageNOT_CONFIGURED

The data recorder has not been configured. This message code is returned by
mpiRecorderRecordGet(.) if the data address count has not been configured. To correct this problem,
configure the data recorder with mpiRecorderConfigSet(.).

MPIRecorderMessageNO_RECORDERS_AVAIL

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/mes1.htm (1 of 2) [1/10/2005 12:10:11 PM]

MPIRecorderMessage

Returned when a recorder number of -1 is specified and all enabled recorders have been previously
reserved by mpiRecorderCreate(...) method calls. Reserved recorders are released by calling
mpiRecorderDelete(...), however, it is possible for a fatal error to occur in your application in which
case mpiRecorderDelete(...) may not be called. To override a reserved recorder number, explicitly
specify the recorder number (i.e. a number other than -1) when calling mpiRecorderCreate(...).

MPIRecorderMessageNOT_ENABLED

An attempt was made to create a recorder that is not enabled on the controller. Recorder objects can
be enabled on the controller by calling mpiControlConfigSet(...).

MPIRecorderMessageRUNNING

 An attempt was made to call mpiRecorderConfigSet(...) while the recorder was running.

See Also

mpiRecorderCreate | mpiRecorderValidate

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/mes1.htm (2 of 2) [1/10/2005 12:10:11 PM]

file://///Pisces/Departments/Documents/Software-MPI/docs/Control/Method/cfset1.htm

MPIRecorderRecord / MEIRecorderRecord

MPIRecorderRecord / MEIRecorderRecord

Definition: MPIRecorderRecord

 typedef union {
 MPIRecorderRecordPoint point[MPIRecorderADDRESS_COUNT_MAX];

} MPIRecorderRecord;

Description

point An array of recorded values corresponding to the XMP addresses stored in

MPIRecorderConfig.address[].

Definition: MEIRecorderRecord

 typedef union {
 MEIRecorderRecordAxis axis[MEIXmpMAX_Axes];

 MEIRecorderRecordFilter filter[MEIXmpMAX_Filters];

 MPIRecorderRecord dummy; /* ensure proper sizing */
} MEIRecorderRecord;

Description

axis An array of MEIRecorderRecordAxis records.

filter An array of MEIRecorderRecordFilter records.

dummy A dummy structure that ensures that MEIRecorderRecord has the proper size.

See Also

MPIRecorderConfig

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/rec3.htm [1/10/2005 12:10:12 PM]

MEIRecorderRecordAxis

MEIRecorderRecordAxis

Definition

 typedef struct MEIRecorderRecordAxis {
 long sample; /* sample number */
 long command; /* command position */
 long actual; /* actual position */
 float dac; /* voltage */
} MEIRecorderRecordAxis;

Description

sample The XMP sample number in which the following values were recorded.

command The command position of the axis.

actual The actual position of the axis.

dac The output of the primary DAC of the motor associated with the axis.

See Also

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/recax2.htm [1/10/2005 12:10:12 PM]

MEIRecorderRecordFilter

MEIRecorderRecordFilter

Definition

 typedef struct MEIRecorderRecordFilter {
 long sample; /* sample number */
 long command; /* command position */
 long actual; /* actual position */
 float dac; /* voltage */
} MEIRecorderRecordFilter;

Description

sample The XMP sample number in which the following values were recorded

command The command position the filter uses to calculate the filter output.

actual The actual position (of an axis) the filter uses to calculate the filter output.

dac The output of the filter that gets sent to a motor's primary DAC.

See Also

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/recftr2.htm [1/10/2005 12:10:12 PM]

MPIRecorderRecordPoint

MPIRecorderRecordPoint

Definition

 typedef long MPIRecorderRecordPoint;

Description

MPIRecorderRecordPoint represents one recorder record. This will correspond to the

value of one XMP address.

See Also

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/recpnt1.htm [1/10/2005 12:10:12 PM]

MPIRecorderType / MEIRecorderType

MPIRecorderType / MEIRecorderType

Definition: MPIRecorderType

 typedef enum {
 MPIRecorderRecordTypeINVALID,
 MPIRecorderRecordTypePOINT,
} MPIRecorderRecordType;

Description

MPIRecorderRecordTypeINVALID an invalid record type.

MPIRecorderRecordTypePOINT specifies to the data recorder that
MPIRecorderRecordPoint records (copies of controller
memory locations) are being recorded.

Definition: MEIRecorderType

 typedef enum {
 MEIRecorderRecordTypeAXIS,
 MEIRecorderRecordTypeFILTER,
} MEIRecorderRecordType;

Description

Predefined types for setting up the type of data an MPIRecorder object will record.
This is used by the mpiRecorderRecordConfig() method.

MEIRecorderRecordTypeAXIS specifies to the data recorder that
MEIRecorderRecordAxis records are being recorded.

MEIRecorderRecordTypeFILTER specifies to the data recorder that
MEIRecorderRecordFilter records are being recorded.

See Also

MPIRecorder | MEIRecorderRecordAxis | MEIRecorderRecordFilter |
mpiRecorderRecordConfig

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/recty3.htm (1 of 2) [1/10/2005 12:10:12 PM]

MPIRecorderStatus

MPIRecorderStatus

Definition

 typedef struct MPIRecorderStatus {
 long enabled;
 long full;
 long recordCount;
 long recordCountMax;
} MPIRecorderStatus;

Description

enabled If the recorder is enabled (recording) then enabled will equal a
non-zero value (-1), otherwise enabled will equal 0.

full If the recorder is full (the number of stored records >=
MPIRecorderConfig.fullCount) then full will equal TRUE,
otherwise full will equal FALSE.

recordCount The number of stored records in the recorder.

recordCountMax The maximum number of records the recorder can store.

See Also

mpiRecorderStatus

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/sts1.htm [1/10/2005 12:10:13 PM]

MEIRecorderTrace

MEIRecorderTrace

Definition

 typedef enum {

 MEIRecorderTraceRECORD_GET,
 MEIRecorderTraceSTATUS,
 MEIRecorderTraceOVERFLOW,
} MEIRecorderTrace;

Description

MEIRecorderTraceRECORD_GET will display trace information when the data recorder
retrieves records.

MEIRecorderTraceSTATUS will display trace information when the MPI retrieves the
data recorder status.

MEIRecorderTraceOVERFLOW will display trace information when the data recorder
overflows.

See Also

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/trc2.htm [1/10/2005 12:10:13 PM]

MEIRecorderTrigger

MEIRecorderTrigger

Definition

 typedef struct MEIRecorderTrigger {
 MEIRecorderTriggerType type;

 union {
 MEIRecorderTriggerUser user;

 } attributes;
} MEIRecorderTrigger;

Description

MEIRecorderTrigger specifies the configurations for a data recorder trigger.

type The data recorder trigger type. See the MEIRecorderTriggerType enumeration.

user The configurations for a user specified trigger type. See MEIRecorderTriggerUser.

See Also

MEIRecorderTrigger | mpiRecorderConfigGet | mpiRecorderConfigSet

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/trgr2.htm [1/10/2005 12:10:13 PM]

MEIRecorderTriggerCondtion

MEIRecorderTriggerCondtion

Definition

 typedef enum MEIRecorderTriggerCondition {
 MEIRecorderTriggerConditionMATCH,
 MEIRecorderTriggerConditionCHANGE,
} MEIRecorderTriggerCondition;

Description

MEIRecorderTriggerCondtion is an enumeration of a data recorder's trigger
conditions. The mask and pattern fields referred to are from the
MEIRecorderTriggerUser structure.

MEIRecorderTriggerTriggerMATCH Triggers when the value at the specified address
ANDed with the mask is equal to the specified
pattern.

MEIRecorderTriggerTriggerCHANGE Triggers when the value at the specified address
ANDed with the mask changes. The pattern field is
only used to set the initial bit pattern used to
determine if a change occurs.

See Also

MEIRecorderTriggerUser | mpiRecorderConfigGet | mpiRecorderConfigSet

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/trgrcond2.htm [1/10/2005 12:10:14 PM]

MEIRecorderTriggerIndex

MEIRecorderTriggerIndex

Definition

 typedef enum MEIRecorderTriggerIndex {
 MEIRecorderTriggerIndexSTART,
 MEIRecorderTriggerIndexSTOP,
} MEIRecorderTriggerIndex;

Description

MEIRecorderTriggerIndex is an enumeration of indices to a data recorder's trigger
logic.

MEIRecorderTriggerIndexSTART Index to a data recorder's start trigger.

MEIRecorderTriggerIndexSTOP Index to a data recorder's stop trigger.

See Also

MEIRecorderConfig | mpiRecorderConfigGet | mpiRecorderConfigSet

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/trgrinx2.htm [1/10/2005 12:10:14 PM]

MEIRecorderTriggerType

MEIRecorderTriggerType

Definition

 typedef enum MEIRecorderTriggerType {
 MEIRecorderTriggerTypeDISABLED,
 MEIRecorderTriggerTypeUSER,
} MEIRecorderTriggerType;

Description

MEIRecorderTriggerType is an enumeration of a data recorder's trigger logic types.

MEIRecorderTriggerTypeDISABLED The data recorder trigger is not enabled.

MEIRecorderTriggerTypeUSER The data recorder trigger is user configurable. See the
MEIRecorderTriggerUser{.} structure for details.

See Also

MEIRecorderTrigger | MEIRecorderTriggerUser | mpiRecorderConfigGet |
mpiRecorderConfigSet

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/trgrty2.htm [1/10/2005 12:10:14 PM]

MEIRecorderTriggerUser

MEIRecorderTriggerUser

Definition

 typedef struct MEIRecorderTriggerUser {
 MEIRecorderTriggerCondition condition;

 long *addr;
 unsigned long mask;
 unsigned long pattern;
 unsigned long count;
} MEIRecorderTriggerUser;

Description

MEIRecorderTriggerUser specifies the configurations for a user specified data
recorder trigger.

condition The logic that determines how to evaluate the addr, mask, and pattern. See the
MEIRecorderTriggerCondition enumeration.

*addr A pointer to a controller address.

mask A bit mask ANDed with the value at the controller address.

pattern A bit pattern compared to the masked value at the controller address.

count The number of records to collect when the recorder is triggered. This is valid for
both start and stop triggers. The valid range is 0 to the recorder buffer size
configured by mpiControlConfigSet(.).

When used for the start trigger, the valid values range from -1 (continuous
recording) to the maximum number of records available in the data recorder
buffer.

When used for the stop trigger, count records will be collected after the trigger
has triggered.

See Also

MEIRecorderTrigger | mpiRecorderConfigGet | mpiRecorderConfigSet

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/trgrusr2.htm [1/10/2005 12:10:14 PM]

file://///Pisces/Departments/Documents/Software-MPI/docs/Control/Method/cfset1.htm

MPIRecorderADDRESS_COUNT_MAX

MPIRecorderADDRESS_COUNT_MAX

Definition

 #define MPIRecorderADDRESS_COUNT_MAX (32)

Description

MPIRecorderADDRESS_COUNT_MAX defines the maximum number of addresses
the Recorder object supports.

See Also

MPIRecorderConfig

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/adscntmax4.htm [1/10/2005 12:10:14 PM]

MEIRecorderMAX_AXIS_RECORDS

MEIRecorderMAX_AXIS_RECORDS

Definition

 #define MEIRecorderMAX_AXIS_RECORDS (8)

Description

MEIRecorderMAX_AXIS_RECORDS defines the maximum number of
MEIRecorderRecordAxis records that can be recorded by a single recorder at any one
time.

See Also

MEIRecorderRecordAxis | mpiRecorderRecordConfig

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/maxaxrec5.htm [1/10/2005 12:10:15 PM]

MEIRecorderMAX_FILTER_RECORDS

MEIRecorderMAX_FILTER_RECORDS

Definition

 #define MEIRecorderMAX_FILTER_RECORDS (8)

Description

MEIRecorderMAX_FILTER_RECORDS defines the maximum number of
MEIRecorderRecordFilter records that can be recorded by a single recorder at any
one time.

See Also

MEIRecorderRecordFilter | mpiRecorderRecordConfig

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/DataType/maxftrrec5.htm [1/10/2005 12:10:15 PM]

Recorder Buffer Size

Recorder Buffer Size

The Data Recorder buffer size can be dynamically allocated. The MPIControlConfig{...} structure has a
new element, called recordCount. This element allows the application to change the size of the recorder
object's data buffer using the mpiControlConfigGet/Set(...) methods. The Record buffer size (the default is
3064 records) is defined within the MEIXmpDefaultEnabled_Records structure (xmp.h). Each record is
the size of one memory word. Using a larger data buffer size can improve the performance of
MotionScope running on a slow host or running in Client/Server mode over a congested network.

A new method, meiControlExtMemAvail(...), has been added which will return the size of external
memory available for allocation. This value can be added to the current recordCount to expand the record
buffer to the maximum possible size.

For more information, see the Special Note on Dynamic Allocation of External Memory Buffers.

Return to Recorder Object's page

file://///Pisces/Departments/Documents/Software-MPI/docs/Recorder/Topics/buffer_size.htm [1/10/2005 12:10:06 PM]

file://///Pisces/Departments/Documents/Software-MPI/docs/Control/DataType/cf3.htm
file://///Pisces/Departments/Documents/Software-MPI/docs/Control/Method/cfget1.htm
file://///Pisces/Departments/Documents/Software-MPI/docs/Control/Method/cfset1.htm
file://///Pisces/Departments/Documents/Software-MPI/docs/Control/Method/extmemavl2.htm
file://///Pisces/Departments/Documents/Software-MPI/docs/Control/Topics/ext_mem_bffrs.htm

	Recorder Objects
	Methods
	mpiRecorderCreate
	mpiRecorderDelete
	mpiRecorderValidate
	mpiRecorderConfigGet
	mpiRecorderConfigSet
	mpiRecorderRecordConfig
	mpiRecorderStatus
	mpiRecorderEventNotifyGet
	mpiRecorderEventNotifySet
	mpiRecorderEventReset
	mpiRecorderRecordGet
	mpiRecorderStart
	mpiRecorderStop
	mpiRecorderMemory
	mpiRecorderMemoryGet
	mpiRecorderMemorySet
	mpiRecorderControl
	mpiRecorderNumber

	Data Types
	MPIRecorderConfig / MEIRecorderConfig
	MPIRecorderMessage
	MPIRecorderRecord / MEIRecorderRecord
	MEIRecorderRecordAxis
	MEIRecorderRecordFilter
	MPIRecorderRecordPoint
	MPIRecorderType / MEIRecorderType
	MPIRecorderStatus
	MEIRecorderTrace
	MEIRecorderTrigger
	MEIRecorderTriggerCondtion
	MEIRecorderTriggerIndex
	MEIRecorderTriggerType
	MEIRecorderTriggerUser

	Constants
	MPIRecorderADDRESS_COUNT_MAX
	MEIRecorderMAX_AXIS_RECORDS
	MEIRecorderMAX_FILTER_RECORDS

	Topics
	Recorder Buffer Size

