
Filter Objects

Filter Objects
Introduction

A Filter object manages a single filter on a controller. It represents the control algorithm
used to control a motor in a closed-loop system. The Filter contains an algorithm, a set
of coefficients, inputs, and an output. Its primary responsibility is to take the difference
between the command and actual positions and then calculate the output based on the
control algorithm and coefficients.

For simple systems, there is a one-to-one relationship between the Axis, Filter, and
Motor objects.

Methods

Create, Delete, Validate Methods
 mpiFilterCreate Create Filter object

 mpiFilterDelete Delete Filter object

 mpiFilterValidate Validate Filter object

Configuration and Information Methods
 mpiFilterConfigGet Get Filter configuration

 mpiFilterConfigSet Set Filter configuration

 mpiFilterFlashConfigGet Get flash configuration for Filter

 mpiFilterFlashConfigSet Set flash configuration for Filter

 mpiFilterGainGet Get gain coefficients

 mpiFilterGainSet Set current gain index

 mpiFilterGainIndexGet Get current gain index

 mpiFilterGainIndexSet Set current gain index

Memory Methods
 mpiFilterMemory Get address to Filter memory

 mpiFilterMemoryGet Copy data from Filter memory to application memory

 mpiFilterMemorySet Copy data from application memory to Filter memory

Relational Methods
 mpiFilterAxisMapGet Get object map of axes associated with Filter

 mpiFilterAxisMapSet Set axes associated with Filter

 mpiFilterControl Return handle of Control that is assoiciated with Filter

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/ftr_out.htm (1 of 2) [7/22/2004 5:37:07 PM]

Filter Objects

 mpiFilterMotorMapGet Get object map of Motors associated with Filter

 mpiFilterMotorMapSet Set Motors to be associated with Filter

 mpiFilterNumber Get index of Filter (for Control list)

Action Methods
 mpiFilterIntergratorReset Reset the integrators of filter.

Postfilter Methods
 meiFilterPostfilterGet Reads postfilter information.

 meiFilterPostfilterSet Writes postfilter information.

 meiFilterPostfilterSectionGet Reads postfilter section information.

 meiFilterPostfilterSectionSet Writes postfilter section information.

Data Types

 MPIFilterCoeff

 MPIFilterConfig / MEIFilterConfig

 MEIFilterForm

 MPIFilterGain

 MEIFilterGainIndex

 MEIFilterGainPID

 MEIFilterGainPIDCoeff

 MEIFilterGainPIV

 MEIFilterGainPIVCoeff

 MEIFilterGainTypePID

 MEIFilterGainTypePIV

 MPIFilterMessage

 MEIFilterType

 MEIPostfilterSection

Constants

 MPIFilterCoeffCOUNT_MAX

 MPIFilterGainCOUNT_MAX

 MEIMaxBiQuadSections

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/ftr_out.htm (2 of 2) [7/22/2004 5:37:07 PM]

mpiFilterCreate

mpiFilterCreate

Declaration MPIFilter mpiFilterCreate(MPIControl control,

 long number)

Required Header stdmpi.h

Description FilterCreate creates a Filter object associated with a filter (number), that is located
on a motion controller (control).
FilterCreate is the equivalent of a C++ constructor.

Return Values
handle to an Filter object

MPIHandleVOID if the Filter object could not be created

See Also mpiFilterDelete | mpiFilterValidate

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/create1.htm [7/22/2004 5:37:07 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/cnl_out.htm

mpiFilterDelete

mpiFilterDelete

Declaration
long mpiFilterDelete(MPIFilter filter)

Required Header stdmpi.h

Description FilterDelete deletes a Filter object and invalidates its handle (filter). FilterDelete is
the equivalent of a C++ destructor.

Return Values
MPIMessageOK if FilterDelete successfully deletes a Filter object and invalidates its handle

See Also mpiFilterCreate | mpiFilterValidate

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/delete1.htm [7/22/2004 5:37:07 PM]

mpiFilterValidate

mpiFilterValidate

Declaration
long mpiFilterValidate(MPIFilter filter)

Required Header stdmpi.h

Description FilterValidate validates the Filter object and its handle (filter).

Return Values
MPIMessageOK if Filter is a handle to a valid object.

See Also mpiFilterCreate | mpiFilterDelete

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/valid1.htm [7/22/2004 5:37:08 PM]

mpiFilterConfigGet

mpiFilterConfigGet

Declaration long mpiFilterConfigGet(MPIFilter filter,

 MPIFilterConfig *config,

 void *external)

Required Header stdmpi.h

Description FilterConfigGet gets a Filter’s (filter) configuration and writes it into the structure
pointed to by config, and also writes it into the implementation-specific structure
pointed to by external (if external is not NULL).

The Filter’s configuration information in external is in addition to the Filter’s
configuration information in config, i.e, the Filter’s configuration information in
config and in external is not the same information. Note that config or external can
be NULL (but not both NULL).

XMP Only
external either points to a structure of type MEIFilterConfig{} or is NULL.

Return Values
MPIMessageOK if FilterConfigGet successfully writes the Filter’s configuration to the structure(s)

See Also mpiFilterConfigSet | MEIFilterConfig

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/cfget1.htm [7/22/2004 5:37:08 PM]

mpiFilterConfigSet

mpiFilterConfigSet

Declaration long mpiFilterConfigSet(MPIFilter filter,

 MPIFilterConfig *config,

 void *external)

Required Header stdmpi.h

Description FilterConfigSet sets a Filter’s (filter) configuration using data from the structure
pointed to by config, and from the implementation-specific structure pointed to by
external (if external is not NULL).

The Filter’s configuration information in external is in addition to the Filter’s
configuration information in config, i.e, the Filter’s configuration information in
config and in external is not the same information. Note that config or external can
be NULL (but not both NULL).

XMP Only
external either points to a structure of type MEIFilterConfig{} or is NULL.

Return Values

MPIMessageOK
if FilterConfigSet successfully sets the Filter’s configuration using data from the
structure(s)

See Also mpiFilterConfigGet | MEIFilterConfig

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/cfset1.htm [7/22/2004 5:37:09 PM]

mpiFilterFlashConfigGet

mpiFilterFlashConfigGet

Declaration long mpiFilterFlashConfigGet(MPIFilter filter,

 void *flash,
 MPIFilterConfig *config,

 void *external)

Required Header stdmpi.h

Description FilterFlashConfigGet gets a Filter’s (filter) flash configuration and writes it into the
structure pointed to by config, and also writes it into the implementation-specific
structure pointed to by external (if external is not NULL).

The Filter’s flash configuration information in external is in addition to the Filter’s
flash configuration information in config, i.e., the flash configuration information in
config and in external is not the same information. Note that config or external can
be NULL (but not both NULL).

XMP Only
external either points to a structure of type MEIFilterConfig{} or is NULL.

Return Values

MPIMessageOK

if FilterFlashConfigGet successfully writes the Filter’s flash configuration to the
structure(s)
flash is either an MEIFlash handle or MPIHandleVOID. If flash is MPIHandleVOID,
an MEIFlash object will be created and deleted internally.

See Also MEIFlash | mpiFilterFlashConfigSet |MEIFilterConfig

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/flacfget1.htm [7/22/2004 5:37:09 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Flash/fla_out.htm

mpiFilterFlashConfigSet

mpiFilterFlashConfigSet

Declaration long mpiFilterFlashConfigSet(MPIFilter filter,

 void *flash,
 MPIFilterConfig *config,

 void *external)

Required Header stdmpi.h

Description FilterFlashConfigSet sets a Filter’s (filter) flash configuration using data from the
structure pointed to by config, and also using data from the implementation-specific
structure pointed to by external (if external is not NULL).

The Filter’s flash configuration information in external is in addition to the Filter’s
flash configuration information in config, i.e., the flash configuration information in
config and in external is not the same information. Note that config or external can
be NULL (but not both NULL).

XMP Only
external either points to a structure of type MEIFilterConfig{} or is NULL.

Return Values

MPIMessageOK

if FilterFlashConfigSet successfully sets the Filter’s flash configuration using data
from the structure(s)
flash is either an MEIFlash handle or MPIHandleVOID. If flash is MPIHandleVOID,
an MEIFlash object will be created and deleted internally.

See Also MEIFlash | mpiFilterFlashConfigGet | MEIFilterConfig

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/flacfset1.htm [7/22/2004 5:37:09 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Flash/fla_out.htm

mpiFilterGainGet

mpiFilterGainGet

Declaration long mpiFilterGainGet(MPIFilter filter,

 long gainIndex,
 MPIFilterGain *gain)

Required Header stdmpi.h

Description FilterGainGet gets the gain coefficients of a Filter (filter, for the gain index specified
by gainIndex) and writes them into the structure pointed to by gain.

Return Values
MPIMessageOK if FilterGainGet successfully writes the gain coefficients to the structure

See Also mpiFilterGainSet

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/gnget1.htm [7/22/2004 5:37:09 PM]

mpiFilterGainSet

mpiFilterGainSet

Declaration long mpiFilterGainSet(MPIFilter filter,

 long gainIndex,
 MPIFilterGain *gain)

Required Header stdmpi.h

Description FilterGainSet sets the gain coefficients of a Filter (filter, for the gain index specified
by gainIndex) using data from the structure pointed to by gain.

Return Values

MPIMessageOK
if FilterGainSet successfully sets the gain coefficients of a Filter using data from the
structure

See Also mpiFilterGainGet

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/gnset1.htm [7/22/2004 5:37:10 PM]

mpiFilterGainIndexGet

mpiFilterGainIndexGet

Declaration long mpiFilterGainIndexGet(MPIFilter filter,

 long *gainIndex)

Required Header stdmpi.h

Description FilterGainIndexGet gets the current gain index of a Filter (filter) and writes it to the
location pointed to by gainIndex. Reading the gain index tells you what gain table is
being used currently.

If the filter is in state MEIXmpSwitchType MEIXmpSwitchTypeMOTION_ONLY,
the gain index is automatically changed by the firmware as described at
MEIXmpSwitchType. When the filter is in state MEIXmpSwitchType
MEIXmpSwitchTypeNONE, the gain index is controlled by the user.

Gain Scheduling is a feature that switches filter gains for the acceleration,
deceleration, constant velocity, and idle states of motion. The post filters are not
affected by gain scheduling. Standard algorithms are used with gain scheduling (PID,
PIV).

Return Values
MPIMessageOK if FilterGainIndexGet successfully writes the gain index to the location

See Also MPIFilterConfig | mpiFilterConfigGet | mpiFilterConfigSet | MEIFilterGainIndex |
MEIXmpSwitchType | mpiFilterGainIndexSet | mpiFilterGainIndexGet | mpiFilterGainGet |
mpiFilterGainSet

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/gninxget1.htm [7/22/2004 5:37:10 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Xmp/DataType/switchty2.htm
file:///D|/pdfs/030100/html/Software-MPI/docs/Xmp/DataType/switchty2.htm

mpiFilterGainIndexSet

mpiFilterGainIndexSet

Declaration long mpiFilterGainIndexSet(MPIFilter filter,

 long gainIndex)

Required Header stdmpi.h

Description FilterGainIndexSet sets the current gain index of a Filter (filter) to gainIndex.
Writing the gain index controls what gain table is currently being used.

If the filter is in state MEIXmpSwitchType
MEIXmpSwitchTypeMOTION_ONLY, the gain index is changed automatically
by the firmware as described at MEIXmpSwitchType. Be aware that the filter can
change the gain index in real-time, thereby overwriting your changes in this mode.

When the filter is in state MEIXmpSwitchType MEIXmpSwitchTypeNONE, the
gain index is controlled by the user. This is the normal state when using
FilterGainIndexSet(...). Gain Scheduling is a feature that switches filter gains for the
acceleration, deceleration, constant velocity, and idle states of motion. The post
filters are not affected by gain scheduling. Standard algorithms are used with gain
scheduling (PID, PIV).

Return Values
MPIMessageOK if FilterGainIndexSet successfully sets the current gain index to gainIndex

See Also MPIFilterConfig | mpiFilterConfigGet | mpiFilterConfigSet | MEIFilterGainIndex |
MEIXmpSwitchType | mpiFilterGainIndexSet | mpiFilterGainIndexGet | mpiFilterGainGet |
mpiFilterGainSet

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/gninxset1.htm [7/22/2004 5:37:11 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Xmp/DataType/switchty2.htm
file:///D|/pdfs/030100/html/Software-MPI/docs/Xmp/DataType/switchty2.htm

mpiFilterMemory

mpiFilterMemory

Declaration long mpiFilterMemory(MPIFilter filter,

 void **memory)

Required Header stdmpi.h

Description FilterMemory writes an address, which is used to access a Filter’s (filter) memory to
the contents of memory. This address, or an address calculated from it, can be passed
as the src parameter to MPIFilterMemoryGet(...) and as the dst parameter to
MPIFilterMemorySet(...).

Return Values

MPIMessageOK
if FilterMemory successfully writes the Filter’s memory address to the contents of
memory

See Also mpiFilterMemoryGet | mpiFilterMemorySet

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/mem1.htm [7/22/2004 5:37:11 PM]

mpiFilterMemoryGet

mpiFilterMemoryGet

Declaration long mpiFilterMemoryGet(MPIFilter filter,

 void *dst,
 void *src,
 long count)

Required Header stdmpi.h

Description FilterMemoryGet copies count bytes of a Filter’s (filter) memory (starting at address
src) and writes them into application memory (starting at address dst).

Return Values

MPIMessageOK
if FilterMemoryGet successfully copies data from Filter memory to application
memory

See Also mpiFilterMemorySet | mpiFilterMemory

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/memget1.htm [7/22/2004 5:37:11 PM]

mpiFilterMemorySet

mpiFilterMemorySet

Declaration long mpiFilterMemorySet(MPIFilter filter,

 void *dst,
 void *src,
 long count)

Required Header stdmpi.h

Description FilterMemorySet copies count bytes of application memory (starting at address src)
and writes them into a Filter’s (filter) memory (starting at address dst).

Return Values

MPIMessageOK
if FilterMemoryGet successfully copies data from application memory to Filter
memory

See Also mpiFilterMemoryGet | mpiFilterMemory

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/memset1.htm [7/22/2004 5:37:11 PM]

mpiFilterAxisMapGet

mpiFilterAxisMapGet

Declaration long mpiFilterAxisMapGet(MPIFilter filter,

 MPIObjectMap *axisMap)

Required Header stdmpi.h

Description FilterAxisMapGet gets the object map of the Axes that are associated with a Filter
(filter), and writes it into the structure pointed to by axisMap.

Return Values
MPIMessageOK if FilterAxisMapGet successfully writes the object map of Axes to the structure

See Also mpiFilterAxisMapSet

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/axmapget1.htm [7/22/2004 5:37:12 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Object/DataType/map1.htm

mpiFilterAxisMapSet

mpiFilterAxisMapSet

Declaration long mpiFilterAxisMapSet(MPIFilter filter,

 MPIObjectMap axisMap)

Required Header stdmpi.h

Description FilterAxisMapSet sets the Axes associated with a Filter (filter), using data from the
object map specified by axisMap.

Return Values
MPIMessageOK if FilterAxisMapSet successfully sets the Axes using the object map

See Also mpiFilterAxisMapGet

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/axmapset1.htm [7/22/2004 5:37:12 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Object/DataType/map1.htm

mpiFilterControl

mpiFilterControl

Declaration
MPIControl mpiFilterControl(MPIFilter filter)

Required Header stdmpi.h

Description FilterControl returns a handle to the motion controller (Control object) associated
with the specified Filter object (filter).

Return Values
handle to a Control object that a Filter object is associated with

MPIHandleVOID if the Filter object is invalid

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/cnl1.htm [7/22/2004 5:37:12 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/cnl_out.htm

mpiFilterMotorMapGet

mpiFilterMotorMapGet

Declaration long mpiFilterMotorMapGet(MPIFilter filter,

 MPIObjectMap *motorMap)

Required Header stdmpi.h

Description FilterMotorMapGet gets the object map of the Motors associated with the Filter
(filter), and writes it into the structure pointed to by motorMap.

Return Values

MPIMessageOK
if FilterMotorMapGet successfully writes the object map of the Motors to the
structure

See Also mpiFilterMotorMapSet

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/mtrmapget1.htm [7/22/2004 5:37:12 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Object/DataType/map1.htm

mpiFilterMotorMapSet

mpiFilterMotorMapSet

Declaration long mpiFilterMotorMapSet(MPIFilter filter,

 MPIObjectMap motorMap)

Required Header stdmpi.h

Description FilterMotorMapSet sets the Motors associated with the Filter (filter) using data from
the object map specified by motorMap.

Return Values
MPIMessageOK if FilterMotorMapGet successfully sets the Motors using data from the object map

See Also mpiFilterMotorMapGet

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/mtrmapset1.htm [7/22/2004 5:37:12 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Object/DataType/map1.htm

mpiFilterNumber

mpiFilterNumber

Declaration long mpiFilterNumber(MPIFilter filter,

 long *number)

Required Header stdmpi.h

Description For a motion controller that filter is associated with, FilterNumber writes the index
of filter to the contents of number.

Return Values
MPIMessageOK if FilterNumber successfully writes the index of a Filter to the contents of number

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/num1.htm [7/22/2004 5:37:13 PM]

mpiFilterIntergratorReset

mpiFilterIntegratorReset

Declaration
long mpiFilterIntegratorReset(MPIFilter filter)

Required Header stdmpi.h

Description
FilterIntegratorReset resets the integrators of filter.

Return Values

MPIMessageOK
if mpiFilterIntegratorReset successfully clears the
integrators of filter.

MPIFilterMessageINVALID_ALGORITHM
if the filter's current algorithm does not use
integrators.

Sample Code

/* Enable the amplifier for every motor attached to a motion supervisor */
void motionAmpEnable(MPIMotion motion)
{
 MPIControl control;
 MPIAxis axis;
 MPIMotor motor;
 MPIFilter filter;
 MPIObjectMap map;
 MPIObjectMap motionMotorMap;
 long motorIndex;
 long filterIndex;
 long returnValue;
 double position;
 long enableState;

 /* Get the controller handle */
 control = mpiMotionControl(motion);

 for (axis = mpiMotionAxisFirst(motion);
 axis != MPIHandleVOID;
 axis = mpiMotionAxisNext(motion, axis)) {

 /* Get the object map for the motors */
 returnValue = mpiAxisMotorMapGet(axis, &map);
 msgCHECK(returnValue);

 /* Add map to motionMotorMap */
 motionMotorMap |= map;
 }

 /* For every motor ... */
 for (motorIndex = 0; motorIndex < MEIXmpMAX_Motors; motorIndex++) {

 if (mpiObjectMapBitGET(motionMotorMap, motorIndex)) {

 /* Create motor handle */
 motor = mpiMotorCreate(control, motorIndex);

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/igtrrst1.htm (1 of 3) [7/22/2004 5:37:13 PM]

mpiFilterIntergratorReset

 msgCHECK(mpiMotorValidate(motor));

 /* Get the state of the amplifier */
 returnValue = mpiMotorAmpEnableGet(motor, &enableState);
 msgCHECK(returnValue);

 /* If the amplifier is disabled ... */
 if (enableState == FALSE) {

 /* For every axis */
 for (axis = mpiMotionAxisFirst(motion);
 axis != MPIHandleVOID;
 axis = mpiMotionAxisNext(motion, axis)) {

 /* Get the object map for the motors */
 returnValue = mpiAxisMotorMapGet(axis, &map);
 msgCHECK(returnValue);

 /* If axis is attached to motor ... */
 if (mpiObjectMapBitGET(map, motorIndex)) {

 /* Get the actual position of the axis */
 returnValue = mpiAxisActualPositionGet(axis, &position);
 msgCHECK(returnValue);

 /* Set command position equal to actual position */
 returnValue = mpiAxisCommandPositionSet(axis, position);
 msgCHECK(returnValue);
 }
 }

 /* Get the object map for the filters */
 returnValue = mpiMotorFilterMapGet(motor, &map);
 msgCHECK(returnValue);

 /* For every filter ... */
 for (filterIndex = 0;
 filterIndex < MEIXmpMAX_Filters;
 filterIndex++) {

 if (mpiObjectMapBitGET(map, filterIndex)) {

 /* Create filter handle */
 filter = mpiFilterCreate(control, filterIndex);
 msgCHECK(mpiFilterValidate(filter));

 /* Reset integrator */
 returnValue = mpiFilterIntegratorReset(filter);
 msgCHECK(returnValue);

 /* Delete filter handle */
 returnValue = mpiFilterDelete(filter);
 msgCHECK(returnValue);
 }
 }

 /* Enable the amplifier */
 returnValue = mpiMotorAmpEnableSet(motor, TRUE);
 msgCHECK(returnValue);
 }

 /* Delete motor handle */

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/igtrrst1.htm (2 of 3) [7/22/2004 5:37:13 PM]

mpiFilterIntergratorReset

 returnValue = mpiMotorDelete(motor);
 msgCHECK(returnValue);
 }
 }
}

See Also MPIFilter | MEIFilterConfig | MEIFilterGainPID | MEIFilterGainPIV
mpiAxisActualPositionGet | mpiAxisCommandPositionSet

Troubleshooting / Helpful Hints

If an axis is not in an error state and the filter associated with that axis' motor has a non-zero
integration term, then it is very likely that the integrator has built up a substantial integral term.
Enabling the motor's amplifier when this has happened could cause the motor to jump with
enormous force. Use mpiFilterIntegratorReset to reset the integrator before enabling the motor's
amplifier to prevent this kind of jump.

Another condition that can cause the motor to jump upon enabling its amplifier is that the
command position of the axis is not equal to the actual position of the axis. To prevent this
situation, one should use mpiAxisActualPositionGet and mpiAxisCommandPositionSet. Please
refer to this functions for a more in depth discussion.

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/igtrrst1.htm (3 of 3) [7/22/2004 5:37:13 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Axis/Method/aclposget1.htm
file:///D|/pdfs/030100/html/Software-MPI/docs/Axis/Method/aclposset1.htm

meiFilterPostfilterGet

meiFilterPostfilterGet

Declaration long meiFilterPostfilterGet(MPIFilter filter,

 long *sectionCount,
 MEIPostfilterSection *sections);

Required Header stdmei.h

Description PostfilterGet reads an MPIFilter object's postfilter configuration. It writes to sectionCount
the number of sections within a postfilter if sectionCount is not NULL. It also writes to
sections the current array of filter's postfilter sections if sections is not NULL.

The MPI calculates the post filter coefficients and takes into consideration the sample rate
of the controller at that time. If you change the sample rate of the controller, you will need
to recalculate the post filters. This can be done for all filters specified in Hertz by setting the
filters again with the MPI. The MPI will calculate the filters using the current servo sample
rate.

Postfilters are used to digitally filter the output of a control loop. One common use for
postfilters is the compensation of system resonances.

 filter the handle of the MPIFilter object whose postfilter configuration is to be read.

 *sectionCount the data location where the postfilter's current section count will be written.

*sections the data location where the postfilter's current section configuration data will be

written.

Sample Code
/* Count the number of resonator sections in a MPIFilter object's postfilter.
 Sample usage:

 returnValue =
 filterResonatorCount(filter, &resonatorCount);
*/

long filterResonatorCount(MPIFilter filter, long* count)
{
 MPIFilterConfig config;
 MEIPostfilterSection sections[MEIMaxBiQuadSections];
 long sectionCount, index;
 long returnValue = (count==NULL) ? MPIMessageARG_INVALID : MPIMessageOK;

 if (returnValue == MPIMessageOK)
 {
 returnValue =
 meiFilterPostfilterGet(filter, §ionCount, sections);

 if (returnValue == MPIMessageOK)
 {

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/postftrget2.htm (1 of 2) [7/22/2004 5:37:14 PM]

meiFilterPostfilterGet

 for (*count=0, index=0; index sectionCount; ++index)
 {
 if (section[index].type == MEIFilterTypeRESONATOR) ++(*count);
 }
 }
 }
 return returnValue;
}

Return Values

MPIMessageOK
if PostfilterGet successfully retrieves postfilter
information.

MPIFilterMessageCONVERSION_DIV_BY_0

Returned when meiFilterPostfilterGet(...) cannot
convert digital coefficients to analog coefficients.
When this error occurs, the offending section(s) will
report its type as MEIFilterTypeUNKNOWN and will
not contain any analog data.

MPIFilterMessagePOSTFILTER_NOT_ENABLED
Returned when sections is not NULL and when no
postfilter sections are enabled.

MPIFilterMessageINVALID_FILTER_FORM
Returned when meiFilterPostfilterGet(...) cannot
interpret the current postfilter's form (when the form is
something other than NONE, IIR, or BIQUAD).

See Also MEIPostfilterSection | meiFilterPostfilterGet | meiFilterPostfilterSet | meFilterPostfilterSectionGet |
MEIMaxBiQuadSections |

Post Filter Theory section.

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/postftrget2.htm (2 of 2) [7/22/2004 5:37:14 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Global/DataType/maxbiquadsect2.htm

meiFilterPostfilterSet

meiFilterPostfilterSet

Declaration long meiFilterPostfilterSet(MPIFilter filter,

 long *sectionsCount,
 MEIPostfilterSection *sections);

Required Header stdmei.h

Description PostfilterSet sets the number of postfilter sections within an MPIFilter object and configures
each postfilter section as well. If numberOfSections equals zero, then sections can be NULL
and the postfilter will be disabled.

The MPI calculates the post filter coefficients and takes into consideration the sample rate of
the controller at that time. If you change the sample rate of the controller, you will need to
recalculate the post filters. This can be done for all filters specified in Hertz by setting the
filters again with the MPI. The MPI will calculate the filters using the current servo sample
rate.

Postfilters are used to digitally filter the output of a control loop. One common use for
postfilters is the compensation of system resonances.

 filter the handle of the MPIFilter object whose postfilter sections will be configured.

 *sectionsCount the number of postfilter sections to set in the filter object.

 *sections a pointer to an array of MEIPostfilterSection data structures to be set in filter.

Sample Code
/* Set a 4th order low-pass post-filter by using two 2nd order low-pass sections.
 Sample usage:

 returnValue =
 fourthOrderLowPass(filter, 300 /* Hz */);
*/
long filterFouthOrderLowpass(MPIFilter filter, long breakPointFrequency)
{
 MPIFilterConfig config;
 MEIPostfilterSection section[MEIMaxBiQuadSections];
 long returnValue;

 section[0].type = MEIFilterTypeLOW_PASS;
 section[0].form = MEIFilterFormINT_BIQUAD;
 section[0].data.lowPass.breakpoint = breakPointFrequency;
 section[1] = section[0]; /* copy first section */

 returnValue =
 meiFilterPostfilterSet(filter, 2, section);

 return returnValue;
}

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/postftrset2.htm (1 of 2) [7/22/2004 5:37:15 PM]

meiFilterPostfilterSet

Return Values
MPIMessageOK if PostfilterSet successfully writes postfilter information.

See Also MEIPostfilterSection | meiFilterPostfilterGet | meFilterPostfilterSectionSet | MEIMaxBiQuadSections |

Post Filter Theory section.

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/postftrset2.htm (2 of 2) [7/22/2004 5:37:15 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Global/DataType/maxbiquadsect2.htm

meiFilterPostfilterSectionGet

meiFilterPostfilterSectionGet

Declaration
long meiFilterPostfilterSectionGet(MPIFilter filter,

 long sectionNumber,
 MEIPostfilterSection *section);

Required Header stdmei.h

Description PostfilterSectionGet reads the configuration of a single section of an MPIFilter object's
postfilter. It writes to *section the configuration of filter's postfilter sectionNumberth section.

The MPI calculates the post filter coefficients and takes into consideration the sample rate of the
controller at that time. If you change the sample rate of the controller, you will need to
recalculate the post filters. This can be done for all filters specified in Hertz by setting the filters
again with the MPI. The MPI will calculate the filters using the current servo sample rate.

Postfilters are used to digitally filter the output of a control loop. One common use for
postfilters is the compensation of system resonances.

 filter the handle of the MPIFilter object whose postfilter section configuration is to be read.

 sectionNumber the index of the postfilter section whose configuration is to be read.

 section the data location where the postfilter's current section configuration data will be written.

Sample Code
/* Test a section of a MPIFilter object's postfilter to see if it is a notch type.
 Sample usage:

 returnValue =
 isSectionTypeNotch(filter, 0, &isNotch);
*/
long isSectionTypeNotch(MPIFilter filter, long sectionIndex, long* isNotch)
{
 MPIFilterConfig config;
 MEIPostfilterSection section;
 long returnValue = (isNotch==NULL) ? MPIMessageARG_INVALID : MPIMessageOK;

 if (returnValue == MPIMessageOK)
 {
 returnValue =
 meiFilterPostfilterSectionGet(filter, sectionIndex, §ion);
 if (returnValue == MPIMessageOK)
 {
 *isNotch = (section.type == MEIFilterTypeNOTCH) ? TRUE : FALSE;
 }
 }

 return returnValue;
}

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/postftrsectget2.htm (1 of 2) [7/22/2004 5:37:16 PM]

meiFilterPostfilterSectionGet

Return Values
MPIMessageOK if PostfilterSectionGet successfully reads postfilter section information.

MPIFilterMessageCONVERSION_DIV_BY_0

Returned when meiFilterPostfilterSectionGet(...) cannot convert digital
coefficients to analog coefficients. When this error occurs, the section
will report its type as MEIFilterTypeUNKNOWN and will not contain
any analog data.

MPIFilterMessageSECTION_NOT_ENABLED Returned when no postfilter sections are enabled.

MPIFilterMessageINVALID_FILTER_FORM
Returned when meiFilterPostfilterSectionGet(...) cannot interpret the
current postfilter's form (when the form is something other than NONE,
IIR, or BIQUAD).

See Also MEIPostfilterSection | meiFilterPostfilterGet | meFilterPostfilterSectionSet | MEIMaxBiQuadSections |

Post Filter Theory section.

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/postftrsectget2.htm (2 of 2) [7/22/2004 5:37:16 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Global/DataType/maxbiquadsect2.htm

meiFilterPostfilterSectionSet

meiFilterPostfilterSectionSet

Declaration
long meiFilterPostfilterSectionSet(MPIFilter filter,

 long sectionNumber,
 MEIPostfilterSection *section);

Required Header stdmei.h

Description PostfilterSectionSet sets the configuration of a single section of an MPIFilter object's
postfilter. It sets filter's postfilter sectionNumberth section to the configuration specified in
*section. If the postfilter type is IIR, then this method is essentially equivalent to
meiFilterPostfilterSet().

The MPI calculates the post filter coefficients taking into consideration the sample rate of the
controller at that time. If you change the change the sample rate of the controller, you will
need to recalculate your post filters. This can be done for all filters specified in Hertz by
setting the filters again using the MPI. The MPI will calculate the filters using the current
servo sample rate.

Postfilters are used to digitally filter the output of a control loop. One common use for
postfilters is the compensation of system resonances.

 filter the handle of the MPIFilter object whose postfilter section configuration is to be set.

 sectionNumber the index of the postfilter section whose configuration is to be set.

 *section the data location of the section configuration to copy to the controller.

Sample Code
/* Set a section of a MPIFilter object's postfilter to a unity gain filter type.
 Sample usage:

 returnValue =
 setSectionTypeUnityGain(filter, 3);
*/
long setSectionTypeUnityGain(MPIFilter filter, long sectionIndex)
{
 MPIFilterConfig config;
 MEIPostfilterSection section;
 long returnValue;

 section.type = MEIFilterTypeUNITY_GAIN;
 section.form = MEIFilterFormBIQUAD;

 returnValue =
 meiFilterPostfilterSectionSet(filter, sectionIndex, §ion);

 return returnValue;
}

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/postftrsectset2.htm (1 of 2) [7/22/2004 5:37:17 PM]

meiFilterPostfilterSectionSet

Return Values
MPIMessageOK if PostfilterSectionSet successfully writes postfilter section information.

See Also MEIPostfilterSection | meiFilterPostfilterSet | meFilterPostfilterSectionGet | MEIMaxBiQuadSections |

Post Filter Theory section.

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Method/postftrsectset2.htm (2 of 2) [7/22/2004 5:37:17 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Global/DataType/maxbiquadsect2.htm

MPIFilterCoeff

MPIFilterCoeff

MPIFilterCoeff
 typedef union {

 float f;
 long l;
} MPIFilterCoeff;

Description
 f float coefficient

 l long coefficient

See Also MPIFilterCoeffCOUNT_MAX | MEIFilterGainPIDCoeff | MEIFilterGainPIVCoeff

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/coef1.htm [7/22/2004 5:37:18 PM]

MPIFilterConfig / MEIFilterConfig

MPIFilterConfig / MEIFilterConfig

MPIFilterConfig

 typedef struct MPIFilterConfig {
 long gainIndex;
 MPIFilterGain gain[MPIFilterGainCOUNT_MAX];

 MPIObjectMap axisMap;

 MPIObjectMap motorMap;

} MPIFilterConfig;

Description

gainIndex gain table index. Gain tables number 0 to MPIFilterGainCOUNT_MAX -1

(MPIFilterGainCOUNT_MAX = 4).

 gain see MPIFilterGain

 axisMap see MPIObjectMap

 motorMap see MPIObjectMap

MEIFilterConfig
 typedef struct MEIFilterConfig {

 MEIXmpAlgorithm Algorithm;

 MEIXmpAxisInput Axis[MEIXmpFilterAxisInputs];

 long *VelPositionPtr;

 MEIXmpSwitchType GainSwitchType;
 float GainDelay;
 long GainWindow;
 MEIXmpSwitchType PPISwitchType;
 MEIXmpPPIMode PPIMode;
 float PPIDelay;
 long PPIWindow;
 MEIXmpIntResetConfig ResetIntegratorConfig;
 float ResetIntegratorDelay;

 MEIXmpFilterForm PostFilterForm;
 MEIXmpPostFilter PostFilter;
} MEIFilterConfig;

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/cf3.htm (1 of 3) [7/22/2004 5:37:08 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Object/DataType/map1.htm
file:///D|/pdfs/030100/html/Software-MPI/docs/Object/DataType/map1.htm
file:///D|/pdfs/030100/html/Software-MPI/docs/Object/DataType/map1.htm
file:///D|/pdfs/030100/html/Software-MPI/docs/Object/DataType/map1.htm

MPIFilterConfig / MEIFilterConfig

Description MEIFilterConfig contains configuration information specific to a controller. With the
exception of the Algorithm element, MEIFilterConfig contains configuration
information that are more intuitively accessed by other means (Postfilter parameter) or
information for advanced setups and custom controller firmware.

Algorithm This value defines the algorithm that the filter is executing every servo cycle. The
most common values are:

MEIXmpAlgorithmPID PID algorithm
MEIXmpAlgorithmPIV PIV algorithm
MEIXmpAlgorithmNONE No control algorithm

Axis
[MEIXmpFilterAxisInputs]

This array defines the axis (pointer to the axis) and coefficient for the position
input into the filter. The input to the filter is the position error of the axis, which
is multiplied by the coefficient defined by the Axis array.

VelPositionPtr Velocity position pointer to an encoder input for algorithms that require a

velocity encoder position input (such as the PIV algorithm).

AuxInput
[MEIXmpFilterAuxInputs]

This array is a place holder for additional filter inputs from analog sources.
This is currently not supported and is reserved for future use.

GainSwitchType Value to define the gain table switch type.

Not implemented in standard firmware.

GainDelay Custom Delay

Not implemented in standard firmware.

GainWindow Custom Delay

Not implemented in standard firmware.

PPISwitchType Value to define the gain switch type for PPI mode.

Not implemented in standard firmware.

PPIMode Value to define the PPI switch mode.

Not implemented in standard firmware.

PPIDelay Custom Delay

Not implemented in standard firmware.

PPIWindow Custom Window

Not implemented in standard firmware.

ResetIntegratorConfig Value to define the integrator's reset configuration.

Not supported in standard firmware.

ResetIntegratorDelay Value to define the integrator's reset delay.

Not supported in standard firmware.

PostFilterForm This value defines the form for postfilters when they are configured using
mpiFilterConfigGet/Set().

Supported values are:

● MEIXmpFilterFormIIR,
IIR Filter

● MEIXmpFilterFormBIQ,
Bi-Quad Filter

● MEIXmpFilterFormSS_BIQ,
State Space form of Bi-Quad Filter

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/cf3.htm (2 of 3) [7/22/2004 5:37:08 PM]

MPIFilterConfig / MEIFilterConfig

● MEIXmpFilterFormINT_BIQ,
Integer (64-bit) Bi-Quad Filter

● MEIXmpFilterFormINT_SS_BIQ,
Integer State Space form of Bi-Quad Filter

Though the postfilter may be configured through this parameter, it is strongly
recommended that users use the meiFilterPostfilter…() methods instead for a
more intuitive and user-friendly interface.

PostFilter This array defines the configuration for the filter's postfilter (the type, the length
and values for the post filter coefficients). Though the postfilter may be
configured though this parameter, it is strongly recommended that users use the
meiFilterPostfilter…() methods instead for a more intuitive interface.

Postfilters are used to digitally filter the output of a control loop. One common
use for postfilters is the compensation of system resonances.

Sample Code

/* Test whether an MPIFilter object's control loop algorithm is PID.
 Sample usage:

 returnValue =
 isAlgorithmPid(filter, &isPid);
*/

long isAlgorithmPid(MPIFilter filter, long* isPid)
{
 MEIFilterConfig xmpConfig;
 long returnValue = (isPid==NULL) ? MPIMessageARG_INVALID : MPIMessageOK;

 if (returnValue == MPIMessageOK)
 {
 returnValue =
 mpiFilterConfigGet(filter, NULL, &xmpConfig);
 if (returnValue == MPIMessageOK)
 {
 *isPid = (xmpConfig.Algorithm == MEIXmpAlgorithmPID) ? TRUE : FALSE;
 }
 }

 return returnValue;
}

See Also mpiFilterConfigGet | mpiFilterConfigSet | meiFilterPostfilterGet |
meiFilterPostfilterSet | meiFilterPostfilterSectionGet | meiFilterPostfilterSectionSet |

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/cf3.htm (3 of 3) [7/22/2004 5:37:08 PM]

MEIFilterForm

MEIFilterForm

MEIFilterForm
 typedef enum{

 MEIFilterFormIIR,
 MEIFilterFormBIQUAD,
 MEIFilterFormSS_BIQUAD,
 MEIFilterFormINT_BIQUAD,
 MEIFilterFormINT_SS_BIQUAD,
} MEIFilterForm;

Description FilterForm describes the form that a digital filter takes on the controller. Please note
that the equations listed below use the coefficients loaded onto the controller, not
necessarily the coefficients used by the MPI. A user may specify a low pass filter
with only a single parameter (the breakpoint) and request that the form of the filter be
a space-state biquad form on the controller.

Digital filtering on the XMP is accomplished through 32-bit words. This equates to
the use of single precision floating point numbers - a 24-bit mantissa or about 7
decimal places of accuracy. This lack of precision can cause errors in the filtering
process normally appearing as DC gain shifts or limit cycling, this especially true
when the filter requires more than one section, a 6th order low pass filter would be
one example. Filter forms using integer math can provide more internal precision for
coefficients and internal registers but at the cost of less dynamic range. Filter forms
using integer math take more processing time for the controller and can potentially
limit the maximum sample rate of the controller.

The state-space (SS) filter forms allow the scaling of the input and the output,
whereas the non-state-space forms only allow output scaling. This helps to prevent
the loss of precision of the internal registers while still maintaining a very large
dynamic range. Filter forms using state-space forms take more processing time for the
controller and can potentially limit the maximum sample rate of the controller.
However, a non-integer state-space filter form takes less processing power than an
integer non-state-space filter form.

MEIFilterFormIIR Deprecated. Cascaded biquad sections offer better

precision and better calculation performance.

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/form2.htm (1 of 3) [7/22/2004 5:37:19 PM]

MEIFilterForm

MEIFilterFormBIQUAD Second Order digital filter form, for implementing
low/high pass, notch, lead/lag and custom filters. The
filter is a single precision floating point canonical form.
The biquad filter is defined by the following discrete
transfer function:

The XMP's representation of this filter is:

w0: Intermediate result
u(k): filter input
a1, a2, b0, b1, and b2: discrete biquad coefficients
y(k):filter output
x1k and x2k: filter states

MEIFilterFormSS_BIQUAD Second order digital filter form, for implementing
low/high pass, notch, lead/lag and custom filters. The
filter is a single precision, floating point state space
implementation. This filter applies input and output
scaling to the canonical form. The XMP's state space
representation of this filter is:

u(k): filter input
d1, c1, c2, a2, a1,b1: discrete biquad coefficients
y(k):filter output
p1k and p2k: filter states

MEIFilterFormINT_BIQUAD Second Order digital filter form, for implementing
low/high pass, notch, lead/lag and custom filters. The
filter is a fixed point canonical form state space
implementation. This form is a fixed point implementation
of the floating point form MEIFilterFormBIQUAD. See
the definition of MEIFilterFormBIQUAD above for the
defining equations for this filter.

The input coefficients for this filter (b0, b1, b2, a1 and a2)
should all be greater than -2, and less than 2. The
coefficients are represented as 32 bit 2's complement, with
1=2^30. The coefficient's numerical format is 1.29 (1 bit
whole, 29 bits fractional), and the controller uses an 80 bit
accumulator. Only the 32 bit result of the multiplication is
output from each section.

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/form2.htm (2 of 3) [7/22/2004 5:37:19 PM]

MEIFilterForm

MEIFilterFormINT_SS_BIQUAD Second Order digital filter form, for implementing
low/high pass, notch, lead/lag and custom filters. The
filter is a fixed point canonical form state space
implementation. This form is a fixed point implementation
of the floating point form MEIFilterFormSS_BIQUAD.
See the definition of MEIFilterFormSS_BIQUAD above
for the defining equations for this filter.

The input coefficients for this filter (d1, c1, c2, a2, a1 and
b1) should all be greater than -2, and less than 2. The
coefficients are represented as 32 bit 2's complement, with
1=2^30. The coefficient's numerical format is 1.29 (1 bit
whole, 29 bits fractional), and the controller uses an 80 bit
accumulator. Only the 32 bit result of the multiplication is
output from each section.

See Also MEIPostfilterSection

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/form2.htm (3 of 3) [7/22/2004 5:37:19 PM]

MPIFilterGain

MPIFilterGain

MPIFilterGain

 typedef struct MPIFilterGain {
 MPIFilterCoeff coeff[MPIFilterCoeffCOUNT_MAX];

} MPIFilterGain;

Description
 coeff see MPIFilterCoeff

See Also MPIFilterGainCOUNT_MAX | MEIFilterGainPIDCoeff | MEIFilterGainPIVCoeff

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/gn1.htm [7/22/2004 5:37:10 PM]

MEIFilterGainIndex

MEIFilterGainIndex

MEIFilterGainIndex
 typedef enum {

 /* Gain table index for normal firmware. */
 MEIFilterGainIndexNO_MOTION = MEIXmpGainNOT_MOVING,
 MEIFilterGainIndexACCEL = MEIXmpGainACCEL,
 MEIFilterGainIndexDECEL = MEIXmpGainDECEL,
 MEIFilterGainIndexVELOCITY = MEIXmpGainCONSTANT_VEL,

 /* Gain table index for Custom 1 firmware. */
 MEIFilterGainIndexSTOPPING2 = MEIXmpGainSTOPPED2,
 MEIFilterGainIndexSTOPPING1 = MEIXmpGainSTOPPED1,
 MEIFilterGainIndexSETTLING = MEIXmpGainSETTLING,
 MEIFilterGainIndexMOVING = MEIXmpGainMOVING,
 MEIFilterGainIndexSTOPPING3 = MEIXmpGainSTOPPED3,

 /* Gain table index for Custom 5 firmware. */
 MEIFilterGainIndexMIN = MEIXmpGainMIN,
 MEIFilterGainIndexMAX = MEIXmpGainMAX,
 MEIFilterGainIndexNONE = MEIXmpGainNONE,
 MEIFilterGainIndexSLOPE = MEIXmpGainSLOPE,

 MEIFilterGainIndexLAST = MEIXmpGainLAST,
 MEIFilterGainIndexALL = MEIFilterGainIndexLAST,
 /* used for gain get/set() */
 MEIFilterGainIndexFIRST = MEIFilterGainIndexINVALID + 1,

 MEIFilterGainIndexDEFAULT = MEIFilterGainIndexNO_MOTION,
} MEIFilterGainIndex;

Description

FilterGainIndex is an enumeration for the gain index used in gain scheduling.

In standard firmware, only
 MEIFilterGainIndexNO_MOTION,
 MEIFilterGainIndexACCEL,
 MEIFilterGainIndexDECEL, and
 MEIFilterGainIndexVELOCITY
are used. The gain index that is currently used can be found with mpiFilterGainIndexGet(...).

Gain Scheduling is a feature that switches filter gains for the acceleration, deceleration, constant
velocity, and idle states of motion. The post filters are not affected by gain scheduling. Standard
algorithms are used with gain scheduling (PID, PIV). To change the gain scheduling type from
NONE (uses only the gains in gain table index 0), use MEIFilterConfig. GainSwitchType is set
with mpiFilterConfigSet(...).

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/gninx2.htm (1 of 2) [7/22/2004 5:37:10 PM]

MEIFilterGainIndex

When setting filter gain parameters using mpiFilterGainGet(...) and mpiFilterGainSet(...), use the
gain index value to write to a gain index of your choosing.

MEIFilterGainIndexNO_MOTION No commanded motion. Trajectory parameters Velocity,

Acceleration, and Jerk equal zero.

 MEIFilterGainIndexACCEL Acceleration portion of the commanded move.

 MEIFilterGainIndexDECEL Deceleration portion of the commanded move.

MEIFilterGainIndexVELOCITY Constant velocity portion of the commanded move. Gain
switching is configured by setting the GainSwtichType,
GainDelay, and GainWindow in the MEIFilterConfig{...}
structure and calling mpiFilterConfigGet/Set(...). The
GainSwitchType has the following options:

See Also MEIFilterConfig | mpiFilterConfigGet | mpiFilterConfigSet | MEIXmpSwitchType |
mpiFilterGainIndexSet | mpiFilterGainIndexGet | mpiFilterGainGet | mpiFilterGainSet

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/gninx2.htm (2 of 2) [7/22/2004 5:37:10 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Xmp/DataType/switchty2.htm

MEIFilterGainPID

MEIFilterGainPID

MEIFilterGainPID
 typedef struct MEIFilterGainPID {

 struct {
 float proportional; /* Kp */
 float integral; /* Ki */
 float derivative; /* Kd */
 } gain;
 struct {
 float position; /* Kpff */
 float velocity; /* Kvff */
 float acceleration; /* Kaff */
 float friction; /* Kfff */
 } feedForward;
 struct {
 float moving; /* MovingIMax */
 float rest; /* RestIMax */
 } integrationMax;
 long dRate; /* DRate */
 struct {
 float limit; /* OutputLimit */
 float limitHigh; /* OutputLimitHigh */
 float limitLow; /* OutputLimitLow */
 float offset; /* OutputOffset */
 } output;
 struct {
 float positionFFT; /* Ka0 */
 float filterFFT; /* Ka1 */
 float velocityFFT; /* Ka2 */
 } noise;
} MEIFilterGainPID;

Description
 FilterGainPID is a structure that defines the filter coefficients for the PID filter algorithm.

See Also High/Low Output Limits section for special instructions regarding MEIFilterGainPID.
MEIFilterGainPIDCoeff

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/gnpid2.htm [7/22/2004 5:37:13 PM]

MEIFilterGainPIDCoeff

MEIFilterGainPIDCoeff

MEIFilterGainPIDCoeff
 typedef enum {

 MEIFilterGainPIDCoeffINVALID = -1,

 MEIFilterGainPIDCoeffGAIN_PROPORTIONAL, /* Kp */
 MEIFilterGainPIDCoeffGAIN_INTEGRAL, /* Ki */
 MEIFilterGainPIDCoeffGAIN_DERIVATIVE, /* Kd */

 MEIFilterGainPIDCoeffFEEDFORWARD_POSITION, /* Kpff */
 MEIFilterGainPIDCoeffFEEDFORWARD_VELOCITY, /* Kvff */
 MEIFilterGainPIDCoeffFEEDFORWARD_ACCELERATION, /* Kaff */
 MEIFilterGainPIDCoeffFEEDFORWARD_FRICTION, /* Kfff */

 MEIFilterGainPIDCoeffINTEGRATIONMAX_MOVING, /* MovingIMax */
 MEIFilterGainPIDCoeffINTEGRATIONMAX_REST, /* RestIMax */

 MEIFilterGainPIDCoeffDRATE, /* DRate */

 MEIFilterGainPIDCoeffOUTPUT_LIMIT, /* OutputLimit */
 MEIFilterGainPIDCoeffOUTPUT_LIMITHIGH, /* OutputLimitHigh */
 MEIFilterGainPIDCoeffOUTPUT_LIMITLOW, /* OutputLimitLow */
 MEIFilterGainPIDCoeffOUTPUT_OFFSET, /* OutputOffset */

 MEIFilterGainPIDCoeffNOISE_POSITIONFFT, /* Ka0 */
 MEIFilterGainPIDCoeffNOISE_FILTERFFT, /* Ka1 */
 MEIFilterGainPIDCoeffNOISE_VELOCITYFFT, /* Ka2 */

} MEIFilterGainPIDCoeff;

Description
 FilterGainPIDCoeff is a structure of enums that defines the filter coefficients for the PID filter algorithm.

See Also MEIFilterGainPID

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/gnpidcoef2.htm [7/22/2004 5:37:18 PM]

MEIFilterGainPIV

MEIFilterGainPIV

MEIFilterGainPIV
 typedef struct MEIFilterGainPIV {

 struct {
 float proportional; /* Kpp */
 float integral; /* Kip */
 } gainPosition;
 struct {
 float proportional; /* Kpv */
 } gainVelocity1;
 struct {
 float position; /* Kpff */
 float velocity; /* Kvff */
 float acceleration; /* Kaff */
 float friction; /* Kfff */
 } feedForward;
 struct {
 float moving; /* MovingIMax */
 float rest; /* RestIMax */
 } integrationMax;
 struct {
 float feedback; /* Kdv */
 } gainVelocity2;
 struct {
 float limit; /* OutputLimit */
 float limitHigh; /* OutputLimitHigh */
 float limitLow; /* OutputLimitLow */
 float offset; /* OutputOffset */
 } output;
 struct {
 float integral; /* Kiv */
 float integrationMax; /* VintMax */
 } gainVelocity3;
 struct {
 float positionFFT; /* Ka0 */
 float filterFFT; /* Ka1 */
 } noise;
} MEIFilterGainPIV;

Description
 FilterGainPIV is a structure that defines the filter coefficients for the PIV filter algorithm.

See Also High/Low Output Limits section for special instructions regarding MEIFilterGainPIV.
MEIFilterGainPIVCoeff

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/gnpiv2.htm (1 of 2) [7/22/2004 5:37:14 PM]

MEIFilterGainPIVCoeff

MEIFilterGainPIVCoeff

MEIFilterGainPIVCoeff
 typedef enum {

 MEIFilterGainPIVCoeffINVALID = -1,

 MEIFilterGainPIVCoeffGAINPOSITION_PROPORTIONAL, /* Kpp */
 MEIFilterGainPIVCoeffGAINPOSITION_INTEGRAL, /* Kip */

 MEIFilterGainPIVCoeffGAINVELOCITY_PROPORTIONAL, /* Kpv */

 MEIFilterGainPIVCoeffFEEDFORWARD_POSITION, /* Kpff */
 MEIFilterGainPIVCoeffFEEDFORWARD_VELOCITY, /* Kvff */
 MEIFilterGainPIVCoeffFEEDFORWARD_ACCELERATION, /* Kaff */
 MEIFilterGainPIVCoeffFEEDFORWARD_FRICTION, /* Kfff */

 MEIFilterGainPIVCoeffINTEGRATIONMAX_MOVING, /* MovingIMax */
 MEIFilterGainPIVCoeffINTEGRATIONMAX_REST, /* RestIMax */

 MEIFilterGainPIVCoeffGAINVELOCITY_FEEDBACK, /* Kdv */

 MEIFilterGainPIVCoeffOUTPUT_LIMIT, /* OutputLimit */
 MEIFilterGainPIVCoeffOUTPUT_LIMITHIGH, /* OutputLimitHigh */
 MEIFilterGainPIVCoeffOUTPUT_LIMITLOW, /* OutputLimitLow */
 MEIFilterGainPIVCoeffOUTPUT_OFFSET, /* OutputOffset */

 MEIFilterGainPIVCoeffGAINVELOCITY_INTEGRAL, /* Kiv */
 MEIFilterGainPIVCoeffGAINVELOCITY_INTEGRATIONMAX, /* Vintmax */

 MEIFilterGainPIVCoeffNOISE_POSITIONFFT, /* Ka0 */
 MEIFilterGainPIVCoeffNOISE_FILTERFFT, /* Ka1 */

} MEIFilterGainPIVCoeff;

Description
 FilterGainPIVCoeff is a structure of enums that defines the filter coefficients for the PIV filter algorithm.

See Also High/Low Output Limits section for special instructions regarding MEIFilterGainPIV.
MEIFilterGainPIV

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/gnpivcoef2.htm (1 of 2) [7/22/2004 5:37:18 PM]

MEIFilterGainTypePID

MEIFilterGainTypePID

MEIFilterGainTypePID
 static MEIDataType MEIFilterGainTypePID[MPIFilterCoeffCOUNT_MAX] =

{
 MEIDataTypeFLOAT, /* Kp */
 MEIDataTypeFLOAT, /* Ki */
 MEIDataTypeFLOAT, /* Kd */

 MEIDataTypeFLOAT, /* Kpff */
 MEIDataTypeFLOAT, /* Kvff */
 MEIDataTypeFLOAT, /* Kaff */
 MEIDataTypeFLOAT, /* Kfff */

 MEIDataTypeFLOAT, /* MovingIMax */
 MEIDataTypeFLOAT, /* RestIMax */

 MEIDataTypeLONG, /* DRate */

 MEIDataTypeFLOAT, /* OutputLimit */
 MEIDataTypeFLOAT, /* OutputLimitHigh */
 MEIDataTypeFLOAT, /* OutputLimitLow */
 MEIDataTypeFLOAT, /* OutputOffset */
 MEIDataTypeFLOAT, /* Ka0 */
 MEIDataTypeFLOAT, /* Ka1 */
 MEIDataTypeFLOAT, /* Ka2 */
};

Description

FilterGainTypePID is a static array that describes the data type of the coefficients for the PID algorithm.
Specifically, an element of MEIFilterGainTypePID describes which member of the union MPIFilterCoeff to
access when using the data structure MPIFilterCoeff.

MEIFilterGainTypePID allows for a more simple design of general case utilities and configuration routines.
If it is known that only the PID parameters will be used, then the data structure MEIFilterGainPID can be
used directly without having to manipulate MPIFilterCoeff, MPIFilterCoeff, and MEIFilterGainTypePID.

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/gntypid2.htm (1 of 2) [7/22/2004 5:37:20 PM]

MEIFilterGainTypePID

Sample Code

/* Read the current value of a filter's PID coefficient. Sample usage:

 returnValue =
 getPidFilterCoeff(filter, MEIFilterGainPIDCoeffGAIN_PROPORTIONAL, &kp);
*/
long getPidFilterCoeff(MPIFilter filter, long index, double* value)
{

 MPIFilterConfig config;
 long returnValue = (value==NULL) ? MPIMessageARG_INVALID : MPIMessageOK;

 if (returnValue == MPIMessageOK)
 {
 returnValue = mpiFilterConfigGet(filter, &config, NULL);

 if (returnValue == MPIMessageOK)
 {
 switch(MEIFilterGainTypePID[index])
 {
 case MEIDataTypeLONG:
 *value = config.gain[config.gainIndex].coeff[index].l;
 break;
 case MEIDataTypeFLOAT:
 *value = config.gain[config.gainIndex].coeff[index].f;
 break;
 default:
 returnValue = MPIMessageARG_INVALID;
 }
 }
 }
return returnValue;
}

See Also MPIFilterCoeff | MEIFilterGainTypePIV | MEIFilterGainPID | MEIDataType | MPIFilterGain |

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/gntypid2.htm (2 of 2) [7/22/2004 5:37:20 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Global/DataType/dtaty2.htm

MEIFilterGainTypePIV

MEIFilterGainTypePIV

MEIFilterGainTypePIV
 static MEIDataType MEIFilterGainTypePIV[MPIFilterCoeffCOUNT_MAX] =

{
 MEIDataTypeFLOAT, /* Kpp */
 MEIDataTypeFLOAT, /* Kip */

 MEIDataTypeFLOAT, /* Kpv */

 MEIDataTypeFLOAT, /* Kpff */
 MEIDataTypeFLOAT, /* Kvff */
 MEIDataTypeFLOAT, /* Kaff */
 MEIDataTypeFLOAT, /* Kfff */

 MEIDataTypeFLOAT, /* MovingIMax */
 MEIDataTypeFLOAT, /* RestIMax */

 MEIDataTypeFLOAT, /* Kdv */

 MEIDataTypeFLOAT, /* OutputLimit */
 MEIDataTypeFLOAT, /* OutputLimitHigh */
 MEIDataTypeFLOAT, /* OutputLimitLow */
 MEIDataTypeFLOAT, /* OutputOffset */

 MEIDataTypeFLOAT, /* Kiv */
 MEIDataTypeFLOAT, /* Vintmax */
 MEIDataTypeFLOAT, /* Ka0 */
 MEIDataTypeFLOAT, /* Ka1 */
};

Description

FilterGainTypePIV is a static array that describes the data type of the coefficients for the PIV algorithm.
Specifically, an element of MEIFilterGainTypePIV describes which member of the union MPIFilterCoeff to access
when using the data structure MPIFilterCoeff.

MEIFilterGainTypePIV allows for a more simple design of general case utilities and configuration routines. If it is
known that only the PIV parameters will be used, then the data structure MEIFilterGainPIV can be used directly
without having to manipulate MPIFilterCoeff, MPIFilterCoeff, and MEIFilterGainTypePIV.

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/gntypiv2.htm (1 of 2) [7/22/2004 5:37:20 PM]

MEIFilterGainTypePIV

Sample Code

/* Read the current value of a filter's PIV coefficient. Sample usage:

 returnValue =
 getPivFilterCoeff(filter, MEIFilterGainPIVCoeffGAINVELOCITY_PROPORTIONAL,
&kpv);
*/
long getPivFilterCoeff(MPIFilter filter, long index, double* value)
{
 MPIFilterConfig config;
 long returnValue = (value==NULL) ? MPIMessageARG_INVALID : MPIMessageOK;

 if (returnValue == MPIMessageOK)
 {

 returnValue = mpiFilterConfigGet(filter, &config, NULL);

 if (returnValue == MPIMessageOK)
 {
 switch(MEIFilterGainTypePIV[index])
 {
 case MEIDataTypeLONG:
 *value = config.gain[config.gainIndex].coeff[index].l;
 break;
 case MEIDataTypeFLOAT:
 *value = config.gain[config.gainIndex].coeff[index].f;
 break;
 default:
 returnValue = MPIMessageARG_INVALID;
 }
 }
 }

 return returnValue;
}

See Also MPIFilterCoeff | MEIFilterGainTypePID | MEIFilterGainPIV | MEIDataType | MPIFilterGain |

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/gntypiv2.htm (2 of 2) [7/22/2004 5:37:20 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Global/DataType/dtaty2.htm

MPIFilterMessage

MPIFilterMessage

MPIFilterMessage
 typedef enum {

 MPIFilterMessageFILTER_INVALID,
 MPIFilterMessageINVALID_ALGORITHM,
 MPIFilterMessageINVALID_DRATE,
 MPIFilterMessageCONVERSION_DIV_BY_0,
 MPIFilterMessagePOSTFILTER_NOT_ENABLED,
 MPIFilterMessageINVALID_FILTER_FORM,
} MPIFilterMessage;

Description
MPIFilterMessageFILTER_INVALID

The filter number is out of range. This message code is returned by mpiFilterCreate(…) if the filter
number is less than zero or greater than or equal to MEIXmpMAX_Filters.

MPIFilterMessageINVALID_ALGORITHM

The filter algorithm is not valid. This message code is returned by mpiFilterIntegratorReset(…) if the
filter algorithm is not a member of the MEIXmpAlgorithm enumeration (does not support integrators).
This problem occurs if the filter type is set to user or an unknown type with mpiFilterConfigSet(…).

MPIFilterMessageINVALID_DRATE

The filter derivative rate is not valid. This message code is returned by mpiFilterConfigSet(…) if the
filter derivative rate is less than 0 or greater than 7.

NOTE: The derivative rate for all gain tables must be in the range [0,7], not just the derivative rate for
the current gain table.

MPIFilterMessageCONVERSION_DIV_BY_0

Returned when meiFilterPostfilterGet(...) or meiFilterPostfilterSectionGet(...) cannot convert digital
coefficients to analog coefficients. When this error occurs, the offending section(s) will report its type
as MEIFilterTypeUNKNOWN and will not contain any analog data.

MPIFilterMessagePOSTFILTER_NOT_ENABLED

Returned when meiFilterPostfilterGet(...) or meiFilterPostfilterSectionGet(...) attempt to read postfilter
data when no postfilter sections are enabled.

MPIFilterMessageINVALID_FILTER_FORM

Returned when meiFilterPostfilterGet(...) or meiFilterPostfilterSectionGet(...) cannot interpret the
current postfilter's form (when the form is something other than NONE, IIR, or BIQUAD).

See Also mpiFilterCreate

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/mes1.htm (1 of 2) [7/22/2004 5:37:20 PM]

MEIFilterType

MEIFilterType

MEIFilterType
 typedef enum {
 MEIFilterTypeUNITY_GAIN,
 /* B0 = 1 B1=B2=A1=A2 = 0 (effectively acting as no filter) */
 MEIFilterTypeSINGLE_ORDER,
 MEIFilterTypeLOW_PASS,
 MEIFilterTypeHIGH_PASS,
 MEIFilterTypeNOTCH,
 MEIFilterTypeRESONATOR,
 MEIFilterTypeLEAD_LAG,
 MEIFilterTypeZERO_GAIN,
 /* b0=b1=b2=a1=a2 = 0 (this does act as a filter.... zeroing the output) */
 MEIFilterTypeBIQUAD,
 /* Only valid for setting. Reading will not return these types */
 MEIFilterTypeDIGITAL_BIQUAD,
 MEIFilterTypePOLES_ZEROS,
 MEIFilterTypeDIGITAL_POLES_ZEROS,
 MEIFilterTypeUNKNOWN,
 /* algorithm couldn't figure out what this filter was from the coeffs! */
} MEIFilterType;

Description NOTE: The MPI will attempt to return analog & digital biquad and pole/zero information from
meiFilterPostfilterGet(...) and meiFilterPostfilterSectionGet(...). However, the filter types
MEIFilterTypeDIGITAL_BIQUAD, MEIFilterTypePOLES_ZEROS, and
MEIFilterTypeDIGITAL_POLES_ZEROS are never returned by get() calls -- they are used only
for setting postfilters. MEIFilterTypeBIQUAD will only be returned by meiFilterPostfilterGet(...)
and meiFilterPostfilterSectionGet(...) if the analog coefficients can be calculated (there is no
division by 0) and the section cannot be identified as one of the other analog filter types.

 MEIFilterTypeUNITY_GAIN A unity gain filter. This effectively performs no filtering.

 MEIFilterTypeSINGLE_ORDER A single order filter

 MEIFilterTypeLOW_PASS A low pass filter

 MEIFilterType_HIGH_PASS A high pass filter.

 MEIFilterTypeNOTCH A notch filter

 MEIFilterTypeRESONATOR A resonator filter.

 MEIFilterTypeLEAD_LAG A lead or lag filter.

MEIFilterTypeZERO_GAIN

Zeros the output of a filter.

MEIFilterTypeBIQUAD An analog biquad filter. When reading postfilter data, this type

means that the postfilter section could not be identified as a
standard filter type.

MEIFilterTypeDIGITAL_BIQUAD A digital biquad filter. This is only used for setting postfilter

sections.

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/ty2.htm (1 of 2) [7/22/2004 5:37:21 PM]

MEIFilterType

MEIFilterTypePOLES_ZERO Analog poles and zeros filter (maximum of two poles and

zeros) with unity zero-frequency amplitude. This is only used
for setting postfilter sections.

MEIFilterTypeDIGITAL_POLES_ZEROS Digital poles and zeros filter (maximum of two poles and

zeros) with unity zero-frequency amplitude. This is only used
for setting postfilter sections.

MEIFilterTypeUNKNOWN Returned by meiFilterPostfilterGet(...) and

meiFilterPostfilterSectionGet(...) if analog coefficients cannot
be found. only digital data will be available.

See Also MEIPostfilterSection | meiFilterPosterfilterGet | meiFilterPosterfilterSet | meiFilterPosterfilterSectionGet |
meiFilterPosterfilterSectionSet

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/ty2.htm (2 of 2) [7/22/2004 5:37:21 PM]

MEIPostfilterSection

MEIPostfilterSection

MEIPostfilterSection
 typedef struct MEIPostfilterSection {

 MEIFilterType type;

 MEIFilterForm form;

 struct {
 struct {
 double breakPoint; /* Hz */
 } lowPass;

 struct {
 double breakPoint; /* Hz */
 } highPass;

 struct {
 double centerFrequency; /* Hz */
 double bandwidth; /* Hz */
 } notch;

 struct {
 double centerFrequency; /* Hz */
 double bandwidth; /* Hz */
 double gain; /* dB */
 } resonator;

 struct {
 double lowFrequencyGain; /* dB */
 double highFrequencyGain; /* dB */
 double centerFrequency; /* Hz */
 } leadLag;

 struct {
 double a1;
 double a2;
 double b0;
 double b1;
 double b2;
 } biquad;

 struct {
 double a1;
 double a2;
 double b0;
 double b1;
 double b2;
 } digitalBiquad;

 struct {
 long poleCount;
 long zeroCount;
 struct {
 double real;
 double imag;
 } pole[2];

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/postftrsect2.htm (1 of 10) [7/22/2004 5:37:15 PM]

MEIPostfilterSection

 struct {
 double real;
 double imag;
 } zero[2];
 } polesZeros;

 struct {
 long poleCount;
 long zeroCount;
 struct {
 double real;
 double imag;
 } pole[2];
 struct {
 double real;
 double imag;
 } zero[2];
 } digitalPolesZeros;

 struct {
 double d1;
 double c1;
 double c2;
 double a2;
 double a1;
 double b1;
 } stateSpaceBiquad;

 struct {
 long numberOfCoefficients;
 double coeff[MEIXmpMAX_PostFilterSize];
 } iir;
 } data;
} MEIPostfilterSection;

Description MEIPostfilterSection holds the configuration data for a single section of an MPIFilter
object's postfilter. The MPI calculates the post filter coefficients and takes into consideration
the sample rate of the controller at that time. If you change the sample rate of the controller,
you will need to recalculate the post filters. This can be done for all filters specified in Hertz
by setting the filters again with the MPI. The MPI will calculate the filters using the current
servo sample rate.

Postfilters are used to digitally filter the output of a control loop. One common use for
postfilters is the compensation of system resonances.

type The postfilter section type. This field determines which field of the
MEIPostfilterSection.data union is used by meiFilterPostfilter…() methods. More
information about particular filter types can be found below and in the
MEIFilterType documentation.

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/postftrsect2.htm (2 of 10) [7/22/2004 5:37:15 PM]

MEIPostfilterSection

form The form of a postfilter section. The form determines how a particular postfilter
section is calculated on the controller. All forms have certain limitations and
tradeoffs. Please refer to MEIFilterForm for more information.

lowPass.breakpoint The break point (measured in Hertz) of a low pass postfilter section.

Example of a 50 Hz low pass filter.

highPass.breakpoint The break point (measured in Hertz) of a high pass postfilter section.

Example of a 50 Hz High pass filter

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/postftrsect2.htm (3 of 10) [7/22/2004 5:37:15 PM]

MEIPostfilterSection

notch.centerFrequency The bandwidth (measured in Hertz) of a notch postfilter section.

Example of a 50 Hz Center / 50 Hz Bandwidth Notch filter. Note that phase wrapping
gives the illusion that phase drops 180 degrees after the center frequency. The phase
raises by 180 degrees.

notch.bandwidth The center frequency (measured in Hertz) of a notch postfilter section.

Example of a 50 Hz Center / 50 Hz Bandwidth Notch filter. Note that phase wrapping

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/postftrsect2.htm (4 of 10) [7/22/2004 5:37:15 PM]

MEIPostfilterSection

gives the illusion that phase drops 180 degrees after the center frequency. The phase
raises by 180 degrees.

resonator.centerFrequency The center frequency (measured in Hertz) of a resonator postfilter section.

Example of a 50 Hz center / 50 Hz Bandwidth / -40 dB Gain Resonator filter. Note
that phase wrapping gives the illusion that the phase drops 360 degrees after the
center frequency.

resonator.bandwidth The bandwidth (measured in Hertz) of a resonator postfilter section.

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/postftrsect2.htm (5 of 10) [7/22/2004 5:37:15 PM]

MEIPostfilterSection

Example of a 50 Hz center / 50 Hz Bandwidth / -40 dB Gain Resonator filter. Note
that phase wrapping gives the illusion that the phase drops 360 degrees after the
center frequency.

resonator.gain The center frequency gain (measured in dB) of a resonator postfilter section.

Example of a 50 Hz center / 50 Hz Bandwidth / -40 dB Gain Resonator filter. Note
that phase wrapping gives the illusion that the phase drops 360 degrees after the
center frequency.

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/postftrsect2.htm (6 of 10) [7/22/2004 5:37:15 PM]

MEIPostfilterSection

leadLad.centerFrequency The center frequency (measured in Hertz) of a lead or lag postfilter section. The
amplitude at this frequency is the average amplitude of the low and high frequency
amplitudes. The gain (measured in dB) at this point is given by:

Example of a -20 dB low frequency gain / -60 dB high frequency gain / 50 Hz center
lead lag filter.

leadLag.lowFrequencyGain The low frequency gain (measured in dB) of a lead or lag postfilter section.

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/postftrsect2.htm (7 of 10) [7/22/2004 5:37:15 PM]

MEIPostfilterSection

Example of a -20 dB low frequency gain / -60 dB high frequency gain / 50 Hz center
lead lag filter.

leadLag.highFrequencyGain The high frequency gain (measured in dB) of a lead or lag postfilter section.

Example of a -20 dB low frequency gain / -60 dB high frequency gain / 50 Hz center
lead lag filter.

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/postftrsect2.htm (8 of 10) [7/22/2004 5:37:15 PM]

MEIPostfilterSection

biquad.a1 The analog coefficients of a single order or bi-quad postfilter section.

Analog values of the postfilter coefficients are produced as parts of a Laplace
Transform:

and

biquad.a2

biquad.b0

biquad.b1

biquad.b2

digitalBiquad.a1

The digital coefficients of a single order or bi-quad postfilter section.
digitalBiquad.a2

digitalBiquad.b0

digitalBiquad.b1

digitalBiquad.b2

digitalBiquad.d1

The digital coefficients of a state-space bi-quad postfilter section.

digitalBiquad.c1

digitalBiquad.c2

digitalBiquad.a2

digitalBiquad.a1

digitalBiquad.b1

polesZeros.poleCount

Analog poles and zeros.
polesZeros.zeroCount

polesZeros.pole[].real

polesZeros.pole[].imag

digitalPolesZeros.poleCount

Digital poles and zeros.
digitalPolesZeros.zeroCount

digitalPolesZeros.pole[].real

digitalpolesZeros.pole[].imag

stateSpaceBiquad.d1

State space coefficients.

stateSpaceBiquad.c1

stateSpaceBiquad.c2

stateSpaceBiquad.a2

stateSpaceBiquad.a1

stateSpaceBiquad.b1

iir.numberOfCoefficients
Currently not supported. Reserved for future use.

iir.coeff

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/postftrsect2.htm (9 of 10) [7/22/2004 5:37:15 PM]

MEIPostfilterSection

Sample Code
/* Set a 4th order low-pass post-filter by using two 2nd order low-pass sections.
 Sample usage:

 returnValue =
 fourthOrderLowPass(filter, 300 /* Hz */);
*/
long filterFouthOrderLowpass(MPIFilter filter, long breakPointFrequency)
{
 MPIFilterConfig config;
 MEIPostfilterSection sections[2];
 long returnValue;

 section[0].type = MEIFilterTypeLOW_PASS;
 section[0].form = MEIFilterFormINT_BIQUAD;
 section[0].lowPass.breakpoint = breakPointFrequency;
 section[1] = section[0]; /* copy first section */

 returnValue =
 meiFilterPostfilterSet(filter, 2, sections);

 return returnValue;
}

See Also MEIFilterType | MEIFilterForm | MEIMaxIIRCoefficients | meiFilterPostfilterGet |
meiFilterPostfilterSet | meiFilterPostfilterSectionGet | meiFilterPostfilterSectionSet |

Post Filter Theory section.

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/postftrsect2.htm (10 of 10) [7/22/2004 5:37:15 PM]

MPIFilterCoeffCOUNT_MAX

MPIFilterCoeffCOUNT_MAX

MPIFilterCoeffCOUNT_MAX
 #define MPIFilterCoeffCOUNT_MAX (20)

Description

FilterCoeffCOUNT_MAX is a constant that defines the maximum number of filter coefficients contained
in a gain table.

See Also MPIFilterCoeff

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/coefcntmax4.htm [7/22/2004 5:37:18 PM]

MPIFilterGainCOUNT_MAX

MPIFilterGainCOUNT_MAX

MPIFilterGainCOUNT_MAX
 #define MPIFilterGainCOUNT_MAX (20)

Description

FilterGainCOUNT_MAX is a constant that defines the maximum number of filter gain tables. The first
gain table is used by the standard filter types (all filter types except for the user filter type as defined by the
structure MEIXmpAlgorithm). Additional gain tables can be used for manual or automatic gain switching.
For firmware that implements automatic gain switching, please contact Motion Engineering. Manual gain
switching can be accomplished by specifying the gainIndex of the mpiFilterConfig structure using the
mpiFilterConfigSet method. Valid gainIndex values range from 0 to MPIFilterGainCOUNT_MAX.

See Also MPIFilterGain

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/gncntmax4.htm [7/22/2004 5:37:19 PM]

file:///D|/pdfs/030100/html/tech/techform.php

MEIMaxBiQuadSections

MEIMaxBiQuadSections

MEIMaxBiQuadSections
 #define MEIMaxBiQuadSections (6)

Description

MEIMaxBiQuadSections is the maximum number of Bi-Quad sections a postfilter can use.

NOTE: The PIV algorithm uses the last Bi-Quad section internally. Thus a user can only use
(MEIMaxBiQuadSections - 1) Bi-quad sections with the PIV algorithm.

See Also MEIPostFilterSection | meiFilterPostfilterGet | meiFilterPostfilterSet |
meiFilterPostfilterSectionGet | meiFilterPostfilterSectionSet

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/DataType/maxbiquadsect2.htm [7/22/2004 5:37:21 PM]

High / Low Output Limits (MEIFilterGainPID and PIV)

Special Note: High / Low Output Limits (MEIFilterGainPID
and PIV)

In the 19990820 release, the MEIFilterGainPID and MEIFilterGainPIV structures were expanded to support
High and Low output limits for PID and PIV algorithms. The "High" output limit prevents the filter output
from exceeding the "High" value. The "Low" output limit prevents the filter output from falling below the
"Low" value. This feature will allow an application to have upper and lower limits which are not centered on
zero volts. If the "High" and "Low" values have the same sign, then the output will be limited to either the
positive or negative range bounded by "High" and "Low".

The standard Output Limit is still valid. The controller will simultaneously use the standard Output Limit and
the High / Low Output Limits to bound the output. The limits, (standard or high or low) that are closest to
zero will be used as the boundary for the output.

Return to MEIFilterGainPID or MEIFilterGainPIV

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Topics/hi_lo_otpt.htm [7/22/2004 5:37:19 PM]

Post Filter Theory

Post Filter Theory
Laplacian Space | Z Space | Z Transform Stability

Laplacian Space

Analog values of the postfilter coefficients are produced as parts of a Laplace Transform:

The amplitude and phase of the filter can be derived from the above by:

 is similar to except that the returned angle can be in the range
from to .

From here we can calculate the gain (in dB) of the filter:

The filter types are designed as follows:

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Topics/post_filter_theory.htm (1 of 6) [7/22/2004 5:37:17 PM]

Post Filter Theory

Low Pass

High Pass

Notch

Resonator

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Topics/post_filter_theory.htm (2 of 6) [7/22/2004 5:37:17 PM]

Post Filter Theory

Lead, Lag

Additional Notes:

For the resonator filter, the maximum and minimum phase changes will occur at:

These frequencies also happen to be the half-gain points measured in dB (or the root-
amplitude gain points).

For the lead/lag filters, the maximal phase change will occur at:

This frequency also happens to be the dB gain mean point measured (or the amplitude
gain geometric mean point).

Z Space

Though Laplacian Space is useful for designing or quickly analyzing a bi-quad filter's
design, it does not accurately model digital bi-quad filters. Digital filters are described
naturally by Z transforms. It is possible to convert a filter from a Laplace transform to a Z

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Topics/post_filter_theory.htm (3 of 6) [7/22/2004 5:37:17 PM]

Post Filter Theory

transform, as will be described below, while maintaining the same general characteristics.
The amplitude and phase information will be slightly warped by moving into Z space. One
should note, however, that for the filters listed above the characteristics of gains,
bandwidths, and center or breakpoint frequencies are unchanged.

Bi-quad filters are described by the following Z transform:

One should note that only filters where the roots of the denominator lie within the unit
circle are stable. Though digital filters can be constructed where the equations for
amplitude and phase for both the Z transform version and the Laplace transform version
may converge, the filter itself will be unstable, continually adding energy to the system.
Please see the Z Transform Stability Section below.

The equations for amplitude, phase and dB gain can be derived from the above Z
transform:

The equations for converting between the analog (Laplace transform) coefficients and the
digital (Z transform) coefficients are handled internally by the MPI, but are listed below so
that one can accurately analyze the performance of the bi-quad filters.

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Topics/post_filter_theory.htm (4 of 6) [7/22/2004 5:37:17 PM]

Post Filter Theory

Bi-quad Postfilter Bi-linear Postfilter (a2 = b2 = 0)

Z Transform Stability

As briefly described in the last section, it is possible for the digital filters constructed from
analog filters to be unstable. One needs to ensure that:

● The filter does not continually add energy to a system.

● The filter has no phase lag at 0 frequency. (A filter with 180° phase lag will create
unstable closed loop systems.)

To guarantee a filter does not continually add energy to a system, the following
relationship must be satisfied by the Z transform coefficients:

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Topics/post_filter_theory.htm (5 of 6) [7/22/2004 5:37:17 PM]

Post Filter Theory

To guarantee a filter has no phase lag at 0 frequency, the following relationship must be
satisfied by the Z transform coefficients:

If it is found that this last condition is not true, then one should change the sign on all Bn
coefficients. Equivalently, one can change the sign of all bn coefficients for the Laplace
(analog) transform.

Return to Filter Objects

file:///D|/pdfs/030100/html/Software-MPI/docs/Filter/Topics/post_filter_theory.htm (6 of 6) [7/22/2004 5:37:17 PM]

	Filter Objects
	Methods
	mpiFilterCreate
	mpiFilterDelete
	mpiFilterValidate
	mpiFilterConfigGet
	mpiFilterConfigSet
	mpiFilterFlashConfigGet
	mpiFilterFlashConfigSet
	mpiFilterGainGet
	mpiFilterGainSet
	mpiFilterGainIndexGet
	mpiFilterGainIndexSet
	mpiFilterMemory
	mpiFilterMemoryGet
	mpiFilterMemorySet
	mpiFilterAxisMapGet
	mpiFilterAxisMapSet
	mpiFilterControl
	mpiFilterMotorMapGet
	mpiFilterMotorMapSet
	mpiFilterNumber
	mpiFilterIntergratorReset
	meiFilterPostfilterGet
	meiFilterPostfilterSet
	meiFilterPostfilterSectionGet
	meiFilterPostfilterSectionSet

	Data Types
	MPIFilterCoeff
	MPIFilterConfig / MEIFilterConfig
	MEIFilterForm
	MPIFilterGain
	MEIFilterGainIndex
	MEIFilterGainPID
	MEIFilterGainPIDCoeff
	MEIFilterGainPIV
	MEIFilterGainPIVCoeff
	MEIFilterGainTypePID
	MEIFilterGainTypePIV
	MPIFilterMessage
	MEIFilterType
	MEIPostfilterSection

	Constants
	MPIFilterCoeffCOUNT_MAX
	MPIFilterGainCOUNT_MAX
	MEIMaxBiQuadSections

	Topics
	High / Low Output Limits (MEIFilterGainPID and PIV)
	Post Filter Theory

