
Capture Object

Capture Object
Introduction

A Capture object manages a single position capture logic block. It represents the
physical hardware capture logic and data. When configured and armed, the capture
logic block can latch a motor's position based on one or more source input triggers.

The Capture object's number, motor input trigger sources, edge, type, feedback source,
and capture index are all configurable. There are two capture types: Position and Time
based. For the Position type, the position counters are latched in the FPGA and are
read directly by the controller. This methodology works well for incremental quadrature
encoders. For the Time type, the FPGA latches the clock and the controller reads the
clock value and position value for that sample period. The controller interpolates the
position value from the previous sample's position, the present sample's position, and
the clock data. This methodology works very well for cyclic feedback data that is digitally
transmitted from the drive to the FPGA. Many drives have a proprietary serial encoder
that decodes the encoder position and sends the position information to the FPGA once
per sample. In these cases, time-based capture is more accurate than position-based
capture.

For the Position type, the motor number for the input sources and the feedback motor
number must be the same.

For the Time type, the motor number and feedback motor number can be different. This
makes is possible to use inputs from one node to capture positions on another node.

When using captures, the controller must have enough enabled captures to process the
specified capture number. The controller will process the enabled captures
(captureCount) every sample period. Since each capture object is configurable, use the
minimum number of captures possible for best controller performance. For example, if
you want to use 2 captures for motor 0 and motor 3, set the capture count to 2 and use
capture number 0 and 1.

Methods

Create, Delete, Validate Methods
 mpiCaptureCreate Create Capture object

 mpiCaptureDelete Delete Capture object

 mpiCaptureValidate Validate Capture object

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/cap_out.htm (1 of 2) [7/22/2004 2:26:22 PM]

Capture Object

Configuration and Information Methods
 mpiCaptureConfigGet Get Capture configuration

mpiCaptureConfigSet

Set Capture configuration

 mpiCaptureStatus Get status of Capture

 mpiCaptureConfigReset

Action Methods
 mpiCaptureArm Arm capture object

Memory Methods
 mpiCaptureMemory Set address to Capture memory

 mpiCaptureMemoryGet Copy Capture memory to application memory

 mpiCaptureMemorySet Copy application memory to Capture memory

Relational Methods
 mpiCaptureNumber Get index of Capture (for Control list)

Data Types

 MPICaptureConfig

 MPICaptureEdge

 MPICaptureMessage / MEICaptureMessage

 MPICaptureSource

 MPICaptureState

 MPICaptureStatus

 MPICaptureTrigger

 MPICaptureTriggerGlobal

 MPICaptureType

Constants

 MPICaptureNOT_MAPPED

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/cap_out.htm (2 of 2) [7/22/2004 2:26:22 PM]

mpiCaptureCreate

mpiCaptureCreate

Declaration
MPICapture mpiCaptureCreate(MPIControl control,

 long number);

Required Header stdmpi.h

Description CaptureCreate creates a Capture object. The Capture object is identified by its
association with a motor object, the motor's encoder and the encoder's capture
number. The maximum number of enabled captures is 16.

CaptureCreate is the equivalent of a C++ constructor.

 control a handle to a Control object

 number An index to the encoder's capture block.

Return Values
handle to a Capture object

MPIHandleVOID if the object could not be created

See Also mpiCaptureNumber

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/Method/create1.htm [7/22/2004 2:26:23 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Motor/mtr_out.htm

mpiCaptureDelete

mpiCaptureDelete

Declaration
long mpiCaptureDelete(MPICapture capture)

Required Header stdmpi.h

Description CaptureDelete deletes a Capture object and invalidates its handle (capture).
CaptureDelete is the equivalent of a C++ destructor.

Return Values
MPIMessageOK if CaptureDelete successfully deletes the Capture object and invalidates its handle

See Also mpiCaptureCreate | mpiCaptureValidate

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/Method/delete1.htm [7/22/2004 2:26:23 PM]

mpiCaptureValidate

mpiCaptureValidate

Declaration
long mpiCaptureValidate(MPICapture capture)

Required Header stdmpi.h

Description CaptureValidate validates the Capture object and its handle. CaptureValidate should
be called immediately after an object is created.

 capture a handle to a capture object

Return Values
MPIMessageOK if Capture is a handle to a valid object.

See Also mpiCaptureCreate | mpiCaptureDelete

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/Method/valid1.htm [7/22/2004 2:26:23 PM]

mpiCaptureConfigGet

mpiCaptureConfigGet

Declaration long mpiCaptureConfigGet(MPICapture capture,

 MPICaptureConfig *config,

 void *external)

Required Header stdmpi.h

Description CaptureConfigGet gets a Capture object’s (capture) configuration and writes it
into the structure pointed to by config, and also writes it into the implementation-
specific structure pointed to by external (if external is not NULL).

The a Capture object’s configuration information in external is in addition to the
Capture object’s configuration information in config, i.e, the Capture object’s
configuration information in config and in external is not the same information.
Note that config or external can be NULL (but not both NULL).

If a capture is in an unknown configuration (non-default), use
mpiCaptureConfigReset(...) to return the capture to the default configuration before
calling mpiCaptureConfigGet(...) and mpiCaptureConfigSet(...). Or if you do not
call mpiCaptureConfigReset(...), make sure that all members of the
MPICaptureConfig{...} structure are explicitly set before calling
mpiCaptureConfigSet(...).

XMP Only
external either points to a structure of type MEICaptureConfig{} or is NULL.

Return Values

MPIMessageOK
if CaptureConfigGet successfully writes the Capture object’s configuration to the
structure(s)

See Also mpiCaptureConfigSet | mpiCaptureConfigReset

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/Method/cfget1.htm [7/22/2004 2:26:24 PM]

mpiCaptureConfigSet

mpiCaptureConfigSet

Declaration long mpiCaptureConfigSet(MPICapture capture,

 MPICaptureConfig *config,

 void *external)

Required Header stdmpi.h

Description CaptureConfigSet sets a Capture object’s (capture) configuration using data from
the structure pointed to by config, and also using data from the implementation-
specific structure pointed to by external (if external is not NULL).

The Capture object’s configuration information in external is in addition to the
Capture object’s configuration information in config, i.e, the Capture object’s
configuration information in config and in external is not the same information.
Note that config or external can be NULL (but not both NULL).

If a capture is in an unknown configuration (non-default), use
mpiCaptureConfigReset(...) to return the capture to the default configuration before
calling mpiCaptureConfigGet(...) and mpiCaptureConfigSet(...). Or if you do not
call mpiCaptureConfigReset(...), make sure that all members of the
MPICaptureConfig{...} structure are explicitly set before calling
mpiCaptureConfigSet(...).

XMP Only
external either points to a structure of type MEICaptureConfig{} or is NULL.

Return Values

MPIMessageOK
if CaptureConfigSet successfully sets the Capture object’s configuration using data
from the structure(s)

See Also mpiCaptureConfigGet | mpiCaptureConfigReset

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/Method/cfset1.htm [7/22/2004 2:26:24 PM]

mpiCaptureStatus

mpiCaptureStatus

Declaration long mpiCaptureStatus(MPICapture capture,

 MPICaptureStatus *status,

 void *external)

Required Header stdmpi.h

Description CaptureStatus writes a Capture object’s (capture) status into the structure pointed to
by status, and also into the implementation-specific structure pointed to by external
(if external is not NULL).

external is reserved for future functionality and should be set to NULL.

 capture a handle to a Capture object

 *status a pointer to MPIStatus structure

 *external a pointer to an implementation-specific structure

XMP Only
external should always be set to NULL.

Return Values

MPIMessageOK
if CaptureStatus successfully writes the status of a Capture object to
the structure(s)

MPIMessageARG_INVALID if the status pointer is NULL.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/Method/sts1.htm [7/22/2004 2:26:25 PM]

mpiCaptureConfigReset

mpiCaptureConfigReset

Declaration
long mpiCaptureConfigReset(MPICapture capture);

Required Header stdmpi.h

Description CaptureConfigReset return the capture object to its unmapped state.

A capture object has no assumed resources, and is unmapped under default
conditions. When a capture is first created, its captureMotorNumber and
feedbackMotorNumber are unmapped. Once a capture has been configured, the next
time that the capture object is created, it will retain the captureMotorNumber and
feedbackMotorNumber that was previously assigned. mpiCaptureConfigReset(...)
will return the capture object to its unmapped state.

If a capture is in an unknown configuration (non-default), use
mpiCaptureConfigReset(...) to return the capture to the default configuration before
calling mpiCaptureConfigGet(...) and mpiCaptureConfigSet(...). Or if you do not
call mpiCaptureConfigReset(...), make sure that all members of the
MPICaptureConfig{...} structure are explicitly set before calling
mpiCaptureConfigSet(...).

 capture a handle to a Capture object

See Also mpiCaptureConfigGet | mpiCaptureConfigSet | MPICaptureConfig

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/Method/cfrst1.htm [7/22/2004 2:26:24 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Motor/mtr_out.htm

mpiCaptureArm

mpiCaptureArm

Declaration long mpiCaptureArm(MPICapture capture,

 long arm) /* TRUE/FALSE */

Required Header stdmpi.h

Description CaptureArm arms or disarms capture.

Value of "arm" Action of mpiCaptureArm

FALSE Disarms capture and sets the state of capture to MPICaptureStateIDLE

TRUE Arms capture and sets the state of capture to MPICaptureStateARMED

Return Values
MPIMessageOK if the Capture object is successfully armed or disarmed

See Also MPICaptureState

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/Method/arm1.htm [7/22/2004 2:26:25 PM]

mpiCaptureMemory

mpiCaptureMemory

Declaration long mpiCaptureMemory(MPICapture capture,

 void **memory)

Required Header stdmpi.h

Description CaptureMemory writes an address [which is used to access a Capture object’s
(capture) memory] to the contents of memory. This address, or an address
calculated from it, can be passed as the src parameter to mpiCaptureMemoryGet(...)
and as the dst parameter to mpiCaptureMemorySet(...).

Return Values

MPIMessageOK
if CaptureMemory successfully writes the Capture object’s memory address to the
contents of memory

See Also mpiCaptureMemoryGet | mpiCaptureMemorySet

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/Method/mem1.htm [7/22/2004 2:26:26 PM]

mpiCaptureMemoryGet

mpiCaptureMemoryGet

Declaration long mpiCaptureMemoryGet(MPICapture capture,

 void *dst,
 void *src,
 long count)

Required Header stdmpi.h

Description CaptureMemoryGet copies count bytes of a Capture object’s (capture) memory
(starting at address src) and writes them into application memory (starting at address
dst).

Return Values

MPIMessageOK
if CaptureMemoryGet successfully copies data from Capture memory to application
memory

See Also mpiCaptureMemory | mpiCaptureMemorySet

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/Method/memget1.htm [7/22/2004 2:26:26 PM]

mpiCaptureMemorySet

mpiCaptureMemorySet

Declaration long mpiCaptureMemorySet(MPICapture capture,

 void *dst,
 void *src,
 long count)

Required Header stdmpi.h

Description CaptureMemorySet copies count bytes of application memory (starting at address
src) and writes them into a Capture object’s (capture) memory (starting at address
dst).

Return Values

MPIMessageOK
if CaptureMemorySet successfully copies count bytes of application memory to
Capture memory

See Also mpiCaptureMemory | mpiCaptureMemoryGet

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/Method/memset1.htm [7/22/2004 2:26:26 PM]

mpiCaptureNumber

mpiCaptureNumber

Declaration long mpiCaptureNumber(MPICapture capture,

 long *number)

Required Header stdmpi.h

Description CaptureNumber reads the index of the capture block associated with the capture
object and writes it into the contents of a long pointed to by encoder.

 capture a handle to a capture object

 *number pointer to the capture number.

Return Values

MPIMessageOK
if CaptureNumber successfully writes the index of a Capture object to the contents of
number

See Also mpiCaptureCreate

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/Method/num1.htm [7/22/2004 2:26:23 PM]

MPICaptureConfig

MPICaptureConfig

MPICaptureConfig
 typedef struct MPICaptureConfig {
 MPICaptureTrigger source[MPICaptureSourceCOUNT];

 /* use MPICaptureSource to index */
 MPICaptureEdge edge;

 MPICaptureTriggerGlobal global;

 MPICaptureType type;

 long captureMotorNumber;
 long feedbackMotorNumber; /* the same as
 captureMotorNumber for POSITION capture */
 MPIMotorEncoder encoder;

 long captureIndex; /* 0,1,... */
} MPICaptureConfig;

Description

source[MPICaptureSourceCOUNT] An array of capture trigger source inputs. The capture can be

configured to trigger from one or more sources. See
MPICaptureTrigger and MPICaptureSourceCOUNT.

edge An enumerated index to the trigger edge type. The capture

can be configured to trigger from a variety of logic. See
MPICaptureEdge.

global A structure to configure the global capture, to chain capture

block triggering. See MPICaptureTriggerGlobal.

type Specifies either postion-based or time-based capture. Use
MPICaptureTypePOSITION for position-based capture and
MPICaptureTypeTIME for time-based capture.

captureMotorNumber The number of the motor whose "source"

(MPICaptureTrigger) is used to capture position.

feedbackMotorNumber The number of the motor whose position is being returned

from the capture event. (It must be the same as
captureMotorNumber for position capture).

 encoder Specifies the encoder feedback being captured.

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/DataType/cf1.htm (1 of 2) [7/22/2004 2:26:24 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Motor/DataType/enc3.htm

MPICaptureConfig

captureIndex A zero-based index that specifies which capture resource on
an axis is to be associated with the capture object.

Each axis on a node has a given number of captures
associated with it. An axis may have up to 4 capture
resources on it. At present, no vendor provides a node with
more than one capture resource, therefore, captureIndex
must be set to zero.

See Also MPICaptureType

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/DataType/cf1.htm (2 of 2) [7/22/2004 2:26:24 PM]

MPICaptureEdge

MPICaptureEdge

MPICaptureEdge
 typedef enum MPICaptureEdge {

 MPICaptureEdgeNONE,
 MPICaptureEdgeRISING,
 MPICaptureEdgeFALLING,
 MPICaptureEdgeEITHER,
} MPICaptureEdge;

Description CaptureEdge is an enumeration of input trigger edge logic for a capture.

 MPICaptureEdgeRISING Triggers on a 0 to 1 transition.

 MPICaptureEdgeFALLING Triggers on a 1 to 0 transition.

 MPICaptureEdgeEITHER Triggers on either 0 to 1 or 1 to 0 transitions.

See Also MPICaptureTrigger

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/DataType/edge1.htm [7/22/2004 2:26:27 PM]

MPICaptureMessage / MEICaptureMessage

MPICaptureMessage / MEICaptureMessage

MPICaptureMessage

 typedef enum {
 MPICaptureMessageMOTOR_INVALID,
 MPICaptureMessageCAPTURE_TYPE_INVALID,
 MPICaptureMessageCAPTURE_INVALID,
 MPICaptureMessageENCODER_INVALID,

} MPICaptureMessage;

Description CaptureMessage is an enumeration of Capture error messages that can be returned
by the MPI library.

MEICaptureMessageMOTOR_INVALID

mpiCaptureConfigSet(...) --> config.captureMotorNumber is not valid. It's either greater than
maxMotors or = = MPICaptureNOT.MAPPED.

MEICaptureMessageCAPTURE_TYPE_INVALID

mpiCaptureConfigSet(...) --> config.Type = = MPICaptureNOT.MAPPED.

MPICaptureMessageCAPTURE_INVALID

The capture number is out of range. This message code is returned by mpiCaptureCreate(…) if the
capture number is less than zero or greater than or equal to MEIXmpMaxCapturesPerMotor.

MPICaptureMessageENCODER_INVALID

The encoder index is out of range. This message code is returned by mpiCaptureCreate(…) if the
encoder index is less than MPIMotorEncoderFIRST or greater than or equal to
MPIMotorEncoderLAST.

See Also mpiCaptureCreate | mpiControlConfigSet

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/DataType/mes3.htm (1 of 3) [7/22/2004 2:26:28 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/cfset1.htm

MPICaptureMessage / MEICaptureMessage

MEICaptureMessage

 typedef enum {
 MEICaptureMessageINVALID_EDGE,
 MEICaptureMessageGLOBAL_CONFIG_ERR,
 MEICaptureMessageGLOBAL_ALREADY_ENABLED,
 MEICaptureMessageCAPTURE_NOT_ENABLED,
 MEICaptureMessageCAPTURE_STATE_INVALID,
 MEICaptureMessageNOT_MAPPED,
 MEICaptureMessageUNSUPPORTED_PRIMARY,
 MEICaptureMessageUNSUPPORTED_SECONDARY,
 MEICaptureMessageSECONDARY_INDEX_INVALID,
} MEICaptureMessage;

Description
MEICaptureMessageINVALID_EDGE

The encoder edge trigger type is not valid. This message code is returned by mpiCaptureConfigSet(…)
if the encoder capture edge type is not a member of the MPICaptureEdge enumeration.

MEICaptureMessageGLOBAL_CONFIG_ERR

The global trigger configuration is not valid. This message code is returned by
mpiCaptureConfigSet(…) if the capture's trigger source is set to global and the capture's global trigger
is enabled simultaneously. To correct this problem, either set the capture's trigger source to global or
enable the capture's global trigger (not both).

MEICaptureMessage_GLOBAL_ALREADY_ENABLED

The global trigger is already enabled. This message code is returned by mpiCaptureConfigSet(…) if a
global trigger is already enabled on another capture on the same node. Only one global trigger enable is
allowed per node. To prevent this problem, do not enable a second global trigger on a single node.

MEICaptureMessageCAPTURE_NOT_ENABLED

This value is returned by mpiCatureCreate(...) when the capture number specified is greater than the
number of captures enabled in firmware. See MPIControlConfig.

MEICaptureMessageCAPTURE_STATE_INVALID

This value is returned by mpiCaptureStatus(...) when the communication between the controller and the
capture logic on the node fails resulting in an invalid capture state. See MPICaptureState.

MEICaptureMessageNOT_MAPPED

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/DataType/mes3.htm (2 of 3) [7/22/2004 2:26:28 PM]

MPICaptureMessage / MEICaptureMessage

The capture object's hardware resource is not available. This message code is returned by
mpiCaptureCreate(…) if the node hardware for the specified motor and encoder is not found. During
controller and network initialization the nodes and motor count for each node is discovered and mapped
to the controller's motor and capture objects. A capture object cannot be created if there is no mapped
hardware to support it. To correct this problem, verify that all expected nodes were found. Use
meiSynqNetInfo(…) and meiSqNodeInfo(…) to determine the node topology and motor count per
node. Check the node hardware power and network connections.

MEICaptureMessageUNSUPPORTED_PRIMARY

The capture hardware does not support the primary encoder. This message code is returned by
mpiCaptureCreate(…) if the node hardware's primary encoder does not support the specified capture.
To correct this problem, select a different motor, encoder, or capture number.

MEICaptureMessageUNSUPPORTED_SECONDARY

The capture hardware does not support the secondary encoder. This message code is returned by
mpiCaptureCreate(…) if the node hardware's secondary encoder does not support the specified capture.
To correct this problem, select a different motor, encoder, or capture number.

MEICaptureMessageSECONDARY_INDEX_INVALID

This message is returned from MPICaptureConfigSet(...) when the secondary encoder's index is
specified as a trigger source in conjunction with other capture sources.

See Also mpiCaptureCreate

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/DataType/mes3.htm (3 of 3) [7/22/2004 2:26:28 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Synqnet/Method/inf2.htm
file:///D|/pdfs/030100/html/Software-MPI/docs/sqNode/Method/inf2.htm

MPICaptureSource

MPICaptureSource

MPICaptureSource
 typedef enum MPICaptureSource {

 MPICaptureSourceMOTOR_IO_0,
 MPICaptureSourceMOTOR_IO_1,
 MPICaptureSourceMOTOR_IO_2,
 MPICaptureSourceMOTOR_IO_3,
 MPICaptureSourceMOTOR_IO_4,
 MPICaptureSourceMOTOR_IO_5,
 MPICaptureSourceMOTOR_IO_6,
 MPICaptureSourceMOTOR_IO_7,
 MPICaptureSourceHOME,
 MPICaptureSourceINDEX,
 MPICaptureSourceLIMIT_HW_NEG,
 MPICaptureSourceLIMIT_HW_POS,
 MPICaptureSourceGLOBAL,
 MPICaptureSourceINDEX_SECONDARY,
 MPICaptureSourceCOUNT,
} MPICaptureSource;

Description CaptureSource is an enumeration of input trigger sources for a capture.

When using one of the MPICaptureSourceMOTOR_IO values in MPICaptureSource, you can
determine which MPICaptureSourceMOTOR_IO to use by referencing the appropriate node
module. Look in NodeMotorIoConfig (replacing Node with your node name) in the
appropriate node module. Add the appropriate NodeMotorIoConfig value to
MPICaptureSourceMOTOR_IO_0.

Example: RMB-10V
Let's say you are using an MEI RMB-10V and want to find the trigger for XCVR_C.

Look in RMBMotorIoConfig in mei_rmb.h. You will find that the appropriate value for
XCVR_C is RMBMotorIoConfigXCVR_C. RMBMotorIoConfigXCVR_C is the third value
in RMBMotorIoConfig. This means that the value to use in MPICaptureSource is
MPICaptureSourceMOTOR_IO_2 (the third MPICaptureSourceMOTOR_IO value).

A better way of making this conversion in your program is to add the
MPICaptureSourceMOTOR_IO_0 to the nodeMotorIoConfig value you want to use. In the
above example, it would be (MPICaptureSourceMOTOR_IO_0 +
RMBMotorIoConfigXCVR_C).

Example: Trust TA800
To trigger off of hall A on a Trust TA800 node, you would use
(MPICaptureSourceMOTOR_IO_0 + TA800MotorIoConfigHALL_A). Remember that you
will need to look in trust_ta800.h (the node module) to find TA800MotorIoConfigHALL_A.

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/DataType/src1.htm (1 of 2) [7/22/2004 2:26:27 PM]

MPICaptureSource

MPICaptureSourceMOTOR_IO_0 a capture trigger source is the 0 bit in the motor's

configurable I/O.

MPICaptureSourceMOTOR_IO_1 a capture trigger source is the 1 bit in the motor's

configurable I/O.

MPICaptureSourceMOTOR_IO_2 a capture trigger source is the 2 bit in the motor's

configurable I/O.

MPICaptureSourceMOTOR_IO_3 a capture trigger source is the 3 bit in the motor's

configurable I/O.

MPICaptureSourceMOTOR_IO_4 a capture trigger source is the 4 bit in the motor's

configurable I/O.

MPICaptureSourceMOTOR_IO_5 a capture trigger source is the 5 bit in the motor's

configurable I/O.

MPICaptureSourceMOTOR_IO_6 a capture trigger source is the 6 bit in the motor's

configurable I/O.

MPICaptureSourceMOTOR_IO_7 a capture trigger source is the 7 bit in the motor's

configurable I/O.

MPICaptureSourceHOME a capture trigger source is the HOME input in the

dedicated I/O input.

MPICaptureSourceINDEX a capture trigger source is the encoder INDEX

input in the dedicated I/O input.

MPICaptureSourceLIMIT_HW_NEG a capture trigger source is the Hardware Negative

Limit input in the dedicated I/O input.

MPICaptureSourceLIMIT_HW_POS a capture trigger source is the Hardware Positive

Limit input in the dedicated IO word. Please see
MPIMotorDedicatedIn.

MPICaptureSourceGLOBAL a capture trigger source is the Global capture signal

found on the node. Please see
MPICaptureTriggerGlobal.

MPICaptureSourceINDEX_SECONDARY A a capture trigger source is the index on the
secondary encoder. If position based capture is
selected with the feedback source being the
secondary encoder, this is the only valid capture
source.

MPICaptureSourceCOUNT Total number of possible input sources for a

capture.

See Also MPICaptureTrigger | MEIMotorIoMask

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/DataType/src1.htm (2 of 2) [7/22/2004 2:26:27 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Motor/DataType/dedin2.htm
file:///D|/pdfs/030100/html/Software-MPI/docs/Motor/DataType/iomsk2.htm

MPICaptureState

MPICaptureState

MPICaptureState

 typedef enum {
 MPICaptureStateIDLE,
 MPICaptureStateARMED,
 MPICaptureStateCAPTURED,
 MPICaptureStateCLEAR,
} MPICaptureState;

Description
 MPICaptureStateIDLE Capture is not armed. This is the default state.

 MPICaptureStateARMED Capture is armed, but has not triggered yet.

 MPICaptureStateCAPTURED Capture triggered and position data is valid.

MPICaptureStateCLEAR Capture is not armed, but has not transitioned to the IDLE state

yet. This is an internal transitional state between CAPTURED
and IDLE. It occurs when a capture is disarmed.

See Also MPICaptureStatus

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/DataType/state1.htm [7/22/2004 2:26:25 PM]

MPICaptureStatus

MPICaptureStatus

MPICaptureStatus

 typedef struct MPICaptureStatus {
 MPICaptureState state;
 double latchedValue;
} MPICaptureStatus;

Description
 state An enumerated value representing the present state of the capture logic

latchedValue The captured position value. This value is only valid when the state is

CAPTURED.

See Also MPICaptureState

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/DataType/sts1.htm [7/22/2004 2:26:25 PM]

MPICaptureTrigger

MPICaptureTrigger

MPICaptureTrigger
 typedef struct MPICaptureTrigger {

 long enabled; /* TRUE/FALSE */
 long invert; /* TRUE = invert, FALSE = normal */
} MPICaptureTrigger;

Description The CaptureTrigger structure specifies the trigger configurations for a capture.

enabled Enables or disables the trigger. A value of TRUE enables the trigger, FALSE disables the

trigger.

invert Normal or inverted trigger polarity. A value of FALSE indicates normal polarity, TRUE

indicates inverted polarity.

See Also MPICaptureSource

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/DataType/trgr1.htm [7/22/2004 2:26:26 PM]

MPICaptureTriggerGlobal

MPICaptureTriggerGlobal

MPICaptureTriggerGlobal
 typedef struct MPICaptureTriggerGlobal {

 long enabled; /* TRUE/FALSE */
} MPICaptureTriggerGlobal;

Description The CaptureTriggerGlobal structure specifies the global input trigger configuration
for a capture.

enabled Enables or disables the global input trigger. A value of TRUE enables the trigger, FALSE

disables the trigger.

See Also MPICaptureConfig

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/DataType/trgrglbl1.htm [7/22/2004 2:26:27 PM]

MPICaptureType

MPICaptureType

MPICaptureType
 typedef enum {

 MPICaptureTypePOSITION,
 MPICaptureTypeTIME,
} MPICaptureType;

Description

MPICaptureTypePOSITION An actual position is captured by the Node from its feedback

source.

MPICaptureTypeTIME An internal timer is captured by the node and then a captured

position is interpolated by the XMP firmware.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/DataType/ty1.htm [7/22/2004 2:26:27 PM]

MPICaptureNOT_MAPPED

MPICaptureNOT_MAPPED

Declaration #define MPICaptureNOT_MAPPED (-1)

Required Header stdmpi.h

Description Capture objects are associated with the controller and are not mapped to any hardware
resources under default conditions. MPICaptureNOT_MAPPED will be assigned to:

 long captureMotorNumber;
 long feedbackMotorNumber;

when mpiCaptureConfigGet() is called for the first time on a capture object. After a
capture object has been used once, the resource mapping will remain in place until it is
reassigned.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/Capture/DataType/notmapped4.htm [7/22/2004 2:26:28 PM]

	Capture Object
	Methods
	mpiCaptureCreate
	mpiCaptureDelete
	mpiCaptureValidate
	mpiCaptureConfigGet
	mpiCaptureConfigSet
	mpiCaptureStatus
	mpiCaptureConfigReset
	mpiCaptureArm
	mpiCaptureMemory
	mpiCaptureMemoryGet
	mpiCaptureMemorySet
	mpiCaptureNumber

	Data Types
	MPICaptureConfig
	MPICaptureEdge
	MPICaptureMessage / MEICaptureMessage
	MPICaptureSource
	MPICaptureState
	MPICaptureStatus
	MPICaptureTrigger
	MPICaptureTriggerGlobal
	MPICaptureType

	Contants
	MPICaptureNOT_MAPPED

