
CAN Objects

CAN Objects
Introduction

The CAN object allow the user easy access to the I/O nodes connected to a controller's
CANOpen interface.

If a controller does not support the CANOpen interface, the meiCanValidate function will
return MEICanMessageINTERFACE_NOT_FOUND.

The CAN system uses the MEICanConfig and MEICanNodeConfig structures to hold all
of the user configurable quantities. These structures are stored in non-volatile flash
memory. When the XMP is released from reset (normally soon after the host powers up
or after a call to mpiControlReset), the CAN Processor will initialize itself with data from
MEICanConfig and MEICanNodeConfig before starting to scanning the network for
nodes.

The functions meiCanConfigGet, meiCanConfigSet, meiCanNodeConfigGet and
meiCanNodeConfigSet allow the user to modify the current configuration of the CAN
Processor, and meiCanFlashConfigGet, meiCanFlashConfigSet,
meiCanFlashNodeConfigGet, and meiCanFlashNodeConfigSet functions allow the user
to modify the configuration that the CAN system will use after the next reset.

The MEICanVersion structure returns the version information about the CAN system on
a controller.

After the CAN processor has finished scanning the network, it will have completed the
MEICanNodeInfo structures for each node. The user can call the meiCanNodeInfo
function to query this initial configuration for each of the nodes.

Bit Rate | Transmission Types | Bus State | CAN Hardware |
Node Health | Emergency Messages | Handling Events | XMP Overview |

Methods

Create, Delete, Validate Methods
 meiCanCreate Create Can object

 meiCanDelete Delete Can object

 meiCanValidate Validate Can object

Configuration and Information Methods

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/can_out.htm (1 of 3) [7/22/2004 1:40:38 PM]

CAN Objects

meiCanConfigGet Get Can’s configuration

meiCanConfigSet Set Can’s configuration

meiCanFlashConfigGet Get Can’s flash configuration

meiCanFlashConfigSet Set Can’s flash configuration

meiCanStatus Get status of the CAN controller.

meiCanVersion Returns the version information about a controller's CAN system.

meiCanCommand Get Can’s flash configuration

meiCanNodeConfigGet Return a copy of the current configuration

meiCanNodeConfigSet Update the current configuration that the specified CAN node is using.

meiCanNodeFlashConfigGet Get the flash configuration of the Can node

meiCanNodeFlashConfigSet Set the flash configuration of the Can node

meiCanNodeStatus Get the instantaneous state of the local CAN interface.

meiCanNodeInfo Return the node information after the XMP finishes scanning the network.

I/O Methods

meiCanNodeAnalogInputGet Get current analog input

meiCanNodeAnalogOutputGet Get current analog output

meiCanNodeAnalogOutputSet Set current analog output

meiCanNodeDigitalInputGet Get the current state of the digital input bit.

meiCanNodeDigitalInputsGet Get the current state of ALL the digital input bits.

meiCanNodeDigitalOutputGet Get the current state of the digital output bit.

meiCanNodeDigitalOutputsGet Get the current state of all the digital output bits.

meiCanNodeDigitalOutputSet changes the state of the digital output bit.

meiCanNodeDigitalOutputsSet Changes the current state of all the digital output bits.

Event Methods
meiCanEventNotifyGet Get event mask of events for which host notification has been requested

meiCanEventNotifySet Set event mask of events for which host notification will be requested

Firmware Methods
meiCanFirmwareDownload Downloads firmware to the Can controller

meiCanFirmwareErase Erases firmware on the Can controller

meiCanFirmwareUpload Uploads firmware from the Can controller

Memory Methods
meiCanMemory Get address to Can’s memory

meiCanMemoryGet Copy data from Can memory to application memory

meiCanMemorySet Copy data from application memory to Recorder memory

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/can_out.htm (2 of 3) [7/22/2004 1:40:38 PM]

CAN Objects

Data Types

MEICanBitRate
MEICanBusState
MEICanCallback
MEICanCommand
MEICanCommandType
MEICanConfig
MEICanDigitalIO
MEICanHealthType

 MEICanMessage
MEICanNodeConfig
MEICanNodeInfo
MEICanNodeStatus
MEICanNodeType
MEICanNMTState
MEICanStatus
MEICanTransmissionType
MEICanVersion

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/can_out.htm (3 of 3) [7/22/2004 1:40:38 PM]

mpiCanCreate

mpiCanCreate

Declaration MEICan meiCanCreate(MPIControl control,

 long network);

Required Header stdmei.h

Description CanCreate creates a CAN object handle that is used subsequently to address the
CAN network on this controller. You will need a valid CAN handle to use the
MPI’s CANOpen functionality.

 control a handle to the controller object that contains the CAN object.

network the number of the CAN network on the specified controller. For most controllers

with a single CAN network interface this will be zero. Network numbers are zero
based.

Example Code

The following sample code shows the creation and destruction
of a valid CAN handle.

MPIControl ControlHandle;
MEICan CANHandle;
long Result;

/* Create, validate and initalise a handle to the controller. */
ControlHandle = mpiControlCreate(MPIControlTypeDEFAULT, NULL);
 Result = mpiControlValidate(ControlHandle);
 assert(Result == MPIMessageOK);

Result = mpiControlInit(ControlHandle);
 assert(Result == MPIMessageOK);

/* Create and validate a handle to the CAN object. */
CANHandle = meiCanCreate(ControlHandle, 0);
 Result = meiCanValidate(CANHandle);
 assert(Result == MPIMessageOK);

/* Use the CAN object here */

/* Delete the CAN and Controller objects */
Result = meiCanDelete(CANHandle);
 assert(Result == MPIMessageOK);
Result = mpiControlDelete(ControlHandle);
 assert(Result == MPIMessageOK);

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/create2.htm (1 of 2) [7/22/2004 1:40:43 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/cnl_out.htm

mpiCanCreate

Return Values
handle Handle to the CAN object created or MPIHandleVOID.

MPIHandleVOID if the object could not be created

See Also mpiCanDelete | mpiCanValidate

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/create2.htm (2 of 2) [7/22/2004 1:40:43 PM]

meiCanDelete

meiCanDelete

Declaration long meiCanDelete(MEICan can);

Required Header stdmei.h

Description CanDelete deletes the specified CAN object.

 can handle to the CAN object to delete.

Example Code

See meiCanCreate for an example of how to use meiCanDelete.

Return Values
MPIMessageOK if CanDelete successfully deletes a CAN object and invalidates its handle

See Also meiCanCreate | meiCanValidate

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/delete2.htm [7/22/2004 1:40:44 PM]

meiCanValidate

meiCanValidate

Declaration long meiCanValidate(MEICan can);

Required Header stdmei.h

Description CanValidate validates the specified CAN handle.

 can handle to the CAN object

Example Code

See meiCanCreate for an example of how to use meiCanValidate.

Return Values

MPIMessageOK
if CanValidate successfully validates that the XMP is properly fitted
for the CANOpen interface.

MPIMessageUNSUPPORTED
indicates that the XMP is not properly fitted for the CANOpen
interface.

See Also meiCanNodeInfo | meiCanNodeStatus

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/valid2.htm [7/22/2004 1:40:44 PM]

meiCanConfigGet

meiCanConfigGet

Declaration long meiCanConfigGet(MEICan can,

 MEICanConfig* config);

Required Header stdmei.h

Description CanConfigGet returns a copy of the current configuration of the CAN controller.

 can a handle to the CAN object

 config a pointer to the CAN configuration structure that will be filled in by this function..

Return Values

MPIMessageOK
if CanConfigGet successfully returns the copy of the current configuration of the
CAN controller.

See Also meiCanConfigSet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/cfget2.htm [7/22/2004 1:40:45 PM]

meiCanFlashConfigGet

meiCanFlashConfigGet

Declaration long meiCanFlashConfigGet(MEICan can,

 void* flash,
 MEICanConfig* config);

Required Header stdmei.h

Description CanFlashConfigGet returns a copy of the current flash configuration that the CAN
controller is using.

 can handle to the CAN object

 flash normally NULL

 config a pointer to the CAN configuration structure that will be filled in by this function.

Return Values

MPIMessageOK
if CanFlashConfigGet successfully returns a copy of the current flash configuration
that the CAN controller is using.

See Also meiCanFlashConfigSet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/flacfget2.htm [7/22/2004 1:40:45 PM]

meiCanFlashConfigSet

meiCanFlashConfigSet

Declaration long meiCanFlashConfigSet(MEICan can,

 void* flash,
 MEICanConfig* config);

Required Header stdmei.h

Description CanFlashConfigSet updates the current flash configuration that the CAN sun-
system is using.

 can handle to the CAN object

 flash normally NULL

 config a pointer to the CAN configuration structure that will be filled in by this function.

Return Values

MPIMessageOK
if CanFlashConfigSet successfully updates the current flash configuration that the
CAN sun-system is using.

See Also meiCanFlashConfigGet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/flacfset2.htm [7/22/2004 1:40:45 PM]

meiCanStatus

meiCanStatus

Declaration long meiCanStatus(MEICan can,

 MEICanStatus* status);

Required Header stdmei.h

Description CanNodeStatus gets the instantaneous state of the local CAN interface to the CAN
network.

 can handle to the CAN object

 node the node number of the CANOpen node.

 status a pointer to where this function will put the status.

Return Values

MPIMessageOK
if CanStatus successfully gets the instantaneous state of the local CAN interface to the
CAN network.

See Also meiCanNodeInfo | meiCanNodeStatus

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/sts2.htm [7/22/2004 1:40:45 PM]

meiCanConfigSet

meiCanConfigSet

Declaration long meiCanConfigSet(MEICan can,

 MEICanConfig* config);

Required Header stdmei.h

Description CanConfigSet updates the current configuration of the CAN controller.

 can a handle to the CAN object

 config a pointer to the CAN configuration structure containing the new configuration.

Return Values
MPIMessageOK if CanConfigSet successfully updates the current configuration of the CAN controller.

See Also meiCanConfigGet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/cfset2.htm [7/22/2004 1:40:41 PM]

meiCanVersion

meiCanVersion

Declaration long meiCanVersion(MEICan can,

 MEICanVersion* version);

Required Header stdmei.h

Description CanVersion returns the version of the firmware being used by the CAN controller.

 can handle to the CAN object

 version a pointer to where this function will put the version information.

Return Values

MPIMessageOK
if CanVersion successfully returns the version of the firmware being used by the CAN
controller.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/ver2.htm [7/22/2004 1:40:46 PM]

meiCanCommand

meiCanCommand

Declaration long meiCanCommand(MEICan can,

 MEICanCommand* command);

Required Header stdmei.h

Description CanCommand allows a set of basic commands to be performed. The type field of
the MEICanCommand structure specifies the type of command to perform.

 can a handle to the CAN object

command a pointer to a structure which contains the details of the command to be issued. On the

functions return, it will contain the result of the requested command.

Return Values
MPIMessageOK if CanCommand successfully performs the set of specified commands.

See Also MEICanCommand

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/cmd2.htm [7/22/2004 1:40:46 PM]

meiCanNodeConfigGet

meiCanNodeConfigGet

Declaration long meiCanNodeConfigGet(MEICan can,

 long node,
 MEICanNodeConfig* nodeConfig);

Required Header stdmei.h

Description CanNodeConfigGet returns a copy of the current configuration that the specified
CAN node is using.

 can a handle to the CAN object

 node the node number of the CANOpen node

nodeConfig a pointer to the CAN node configuration structure that will be filled in by this

function.

Return Values

MPIMessageOK
if CanNodeConfigGet successfully returns the copy of the current configuration of the
specified CAN node.

See Also meiCanNodeConfigSet | meiCanConfigGet | meiCanConfigSet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/ndcfget2.htm [7/22/2004 1:40:47 PM]

meiCanNodeConfigSet

meiCanNodeConfigSet

Declaration long meiCanNodeConfigSet(MEICan can,

 long node,
 MEICanNodeConfig* nodeConfig);

Required Header stdmei.h

Description CanNodeConfigSet updates the current configuration that the specified CAN node
is using.

 can a handle to the CAN object

 node the node number of the CANOpen node

 nodeConfig a pointer to the CAN node configuration structure containing the new configuration.

Return Values

MPIMessageOK
if CanNodeConfigSet successfully updates the current configuration of the specified
CAN node.

See Also meiCanNodeConfigGet | meiCanConfigGet | meiCanConfigSet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/ndcfset2.htm [7/22/2004 1:40:47 PM]

meiCanNodeFlashConfigGet

meiCanNodeFlashConfigGet

Declaration long meiCanNodeFlashConfigGet(MEICan can,

 void* flash,
 long node,
 MEICanNodeConfig* nodeConfig);

Required Header stdmei.h

Description CanNodeFlashConfigGet returns a copy of the current flash configuration of the
CAN controller.

 can a handle to the CAN object

 flash normally NULL
 node the node number of the CANOpen node
 nodeConfig a pointer to the CAN node configuration structure that will be filled in by this function

Return Values

MPIMessageOK
if CanNodeFlashConfigGet successfully returns the copy of the current flash
configuration of the CAN controller.

See Also meiCanNodeFlashConfigSet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/ndflacfget2.htm [7/22/2004 1:40:47 PM]

meiCanNodeFlashConfigSet

meiCanNodeFlashConfigSet

Declaration long meiCanNodeFlashConfigSet(MEICan can,

 void* flash,
 long node,
 MEICanNodeConfig* nodeConfig);

Required Header stdmei.h

Description CanNodeFlashConfigSet updates the current flash configuration for the node.

 can a handle to the CAN object

 flash normally NULL
 node the node number of the CANOpen node
 nodeConfig a pointer to the CAN node configuration structure containing the new configuration.

Return Values

MPIMessageOK
if CanNodeFlashConfigSet successfully updates the current flash configuration for the
node.

See Also meiCanNodeFlashConfigGet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/ndflacfset2.htm [7/22/2004 1:40:48 PM]

meiCanNodeStatus

meiCanNodeStatus

Declaration long meiCanNodeStatus(MEICan can,

 long node,
 MEICanNodeStatus* nodeStatus);

Required Header stdmei.h

Description CanNodeStatus gets the instantaneous state of the specified node on the CAN
network.

 can handle to the CAN object

 node the node number of the CANOpen node.

 nodeStatus a pointer to where this function will put the node status.

Return Values

MPIMessageOK
if CanNodeStatus successfully gets the instantaneous state of the specified node on the
CAN network.

See Also meiCanNodeInfo | meiCanStatus

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/ndsts2.htm [7/22/2004 1:40:44 PM]

meiCanNodeInfo

meiCanNodeInfo

Declaration long meiCanNodeInfo(MEICan can,

 long node,
 MEICanNodeInfo* nodeInfo);

Required Header stdmei.h

Description CanNodeInfo returns the node information for the specified node on the CAN
network that was generated when the XMP finished scanning the network.

 can handle to the CAN object

 node the filename of the CAN controller firmware (*.out file).

 nodeInfo a pointer to where this function will put the node information.

Return Values
MPIMessageOK if CanNodeInfo successfully returns the node information for the specified node.

See Also meiCanNodeStatus | meiCanStatus

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/ndinf2.htm [7/22/2004 1:40:44 PM]

meiCanNodeAnalogInputGet

meiCanNodeAnalogInputGet

Declaration long meiCanNodeAnalogInputGet(MEICan can,

 long node,
 long index,
 double* data);

Required Header stdmei.h

Description CanNodeAnalogInputGet gets the current analog input from the specified CAN
Node. The analog data returned is scaled to between ±1.0.

 can handle to the CAN object

 node the node number of the CANOpen node.

 index the index to the analog input on the node.

 data a pointer to where the current analog input is returned.

Return Values

MPIMessageOK
if CanNodeAnalogInputGet successfully gets the current analog input from the
specified CAN Node.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/ndanlgiptget2.htm [7/22/2004 1:40:48 PM]

meiCanNodeAnalogOutputGet

meiCanNodeAnalogOutputGet

Declaration long meiCanNodeAnalogOutputGet(MEICan can,

 long node,
 long index,
 double* data);

Required Header stdmei.h

Description CanNodeAnalogOutputGet gets the current analog output from the specified
CAN node and channel. The analog data returned is scaled to between ±1.0.

 can handle to the CAN object

 node the node number of the CANOpen node.

 index the index to the analog input on the node.

 data a pointer to where the current analog output is returned.

Return Values

MPIMessageOK
if CanNodeAnalogOutputGet successfully gets the current analog output from the
specified CAN Node and channel.

See Also meiCanNodeAnalogOutputSet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/ndanlgotptget2.htm [7/22/2004 1:40:48 PM]

meiCanNodeAnalogOutputSet

meiCanNodeAnalogOutputSet

Declaration long meiCanNodeAnalogOutputSet(MEICan can,

 long node,
 long index,
 double* data);

Required Header stdmei.h

Description CanNodeAnalogOutputSet sets the current analog output for the specified CAN
node and channel. The analog data used is assumed to be between ±1.0.

 can handle to the CAN object

 node the node number of the CANOpen node.

 index the index to the analog input on the node.

 data the new analog value to be output.

Return Values

MPIMessageOK
if CanNodeAnalogOutputSet successfully sets the current analog output for the
specified CAN Node and channel.

See Also meiCanNodeAnalogOutputGet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/ndanlgotptset2.htm [7/22/2004 1:40:48 PM]

meiCanNodeDigitalInputGet

meiCanNodeDigitalInputGet

Declaration long meiCanNodeDigitalInputGet(MEICan can,

 long node,
 long bit,
 long* data);

Required Header stdmei.h

Description CanNodeDigitalInputGet gets the current state of the digital input bit on the
specified CAN node.

(Not to be confused with meiCanNodeDigitalInputsGet.)

 can handle to the CAN object

 node the node number of the CANOpen node

 bit Which bit on this node

 data a pointer to where the current digital bit is returned

Example Code

The following sample code shows how to interrogate the current
state
of a single digital input bit on a controller. The variable Bit
will
contain either one or zero depending on the electrical signal
being
applied to the input pin on the CANOpen node. See meiCanCreate on
how to create the CANHandle.

 long Bit;
 long Result;
 Result = meiCanNodeDigitalInputGet(CANHandle,
 3, /*node*/
 0, /*bit*/
 &Bit);

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/nddigiptget2.htm (1 of 2) [7/22/2004 1:40:49 PM]

meiCanNodeDigitalInputGet

Return Values

MPIMessageOK
if CanNodeAnalogInputGet successfully gets the current analog input from the
specified CAN Node.

See Also meiCanCreate

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/nddigiptget2.htm (2 of 2) [7/22/2004 1:40:49 PM]

meiCanNodeDigitalInputsGet

meiCanNodeDigitalInputsGet

Declaration long meiCanNodeDigitalInputsGet(MEICan can,

 long node,
 MEICanDigitalIO* data);

Required Header stdmei.h

Description CanNodeDigitalInputsGet gets the current state of all the digital input bits on the
specified CAN node.

(Not to be confused with meiCanNodeDigitalInputGet.)

 can handle to the CAN object

 node the node number of the CANOpen node.

 data a pointer to where the current digital bits are returned.

Return Values

MPIMessageOK
if CanNodeDigitalInputsGet successfully gets the current state of all the digital input
bits on the specified CAN Node.

See Also meiCanNodeDigitalInputGet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/nddigiptget_s2.htm [7/22/2004 1:40:49 PM]

meiCanNodeDigitalOutputGet

meiCanNodeDigitalOutputGet

Declaration long meiCanNodeDigitalOutputGet(MEICan can,

 long node,
 long bit,
 long* data);

Required Header stdmei.h

Description CanNodeAnalogOutputGet gets the current state of the digital output bit on the
specified CAN Node.

(Not to be confused with meiCanNodeDigitalOutputsGet.)

 can handle to the CAN object

 node the node number of the CANOpen node.

 bit which bit on this node.

 data a pointer to where the current digital bit is returned.

Return Values

MPIMessageOK
if CanNodeDigitalOutputGet successfully gets the current digital output bit on the
specified CAN Node.

See Also meiCanNodeDigitalOutputSet | meiCanNodeDigitalOutputsGet |
meiCanNodeDigitalOutputsSet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/nddigotptget2.htm [7/22/2004 1:40:49 PM]

meiCanNodeDigitalOutputsGet

meiCanNodeDigitalOutputsGet

Declaration long meiCanNodeDigitalOutputsGet(MEICan can,

 long node,
 MEICanDigitalIO* data);

Required Header stdmei.h

Description CanNodeAnalogOutputGet gets the current state of all the digital output bits on
the specified CAN node.

(Not to be confused with meiCanNodeDigitalOutputsGet.)

 can handle to the CAN object

 node the node number of the CANOpen node.

 data a pointer to where the current digital bit is returned.

Return Values

MPIMessageOK
if CanNodeDigitalOutputsGet successfully gets the current digital output bits on the
specified CAN node.

See Also meiCanNodeDigitalOutputGet | meiCanNodeDigitalOutputSet |
meiCanNodeDigitalOutputsSet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/nddigotptget_s2.htm [7/22/2004 1:40:50 PM]

meiCanNodeDigitalOutputSet

meiCanNodeDigitalOutputSet

Declaration long meiCanNodeDigitalOutputSet(MEICan can,

 long node,
 long bit,
 long data);

Required Header stdmei.h

Description CanNodeDigitalOutputSet changes the state of the digital output bit on the
specified CAN Node.

(Not to be confused with meiCanNodeDigitalOutputsSet.)

 can handle to the CAN object

 node the node number of the CANOpen node.

 bit which bit on this node.

 data the new state of the digital bit.

Return Values

MPIMessageOK
if CanNodeDigitalOutputSet successfully changes the state of the digital output bit on
the specified CAN Node.

See Also meiCanNodeDigitalOutputGet | meiCanNodeDigitalOutputsGet |
meiCanNodeDigitalOutputsSet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/nddigotptset2.htm [7/22/2004 1:40:50 PM]

meiCanNodeDigitalOutputsSet

meiCanNodeDigitalOutputsSet

Declaration long meiCanNodeDigitalOutputsSet(MEICan can,

 long node,
 MEICanDigitalIO* data);

Required Header stdmei.h

Description CanNodeDigitalOutputsSet changes the current state of all the digital output bits
on the specified CAN node.

(Not to be confused with meiCanNodeDigitalOutputSet.)

 can handle to the CAN object

 node the node number of the CANOpen node.

 data the new data of the digital bits.

Return Values

MPIMessageOK
if CanNodeDigitalOutputsSet successfully changes the current state of all the digital
output bits on the specified CAN node.

See Also meiCanNodeDigitalOutputGet | meiCanNodeDigitalOutputSet |
meiCanNodeDigitalOutputsGet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/nddigotptset_s2.htm [7/22/2004 1:40:50 PM]

meiCanEventNotifyGet

meiCanEventNotifyGet

Declaration long meiCanEventNotifyGet(MEICan can,

 MPIEventMask *eventMask,

 void *external);

Required Header stdmei.h

Description CanEventNotifyGet gets the current CAN event mask.

 can handle to the CAN object.

 *eventMask a pointer to the MPI event mask that will be filled in by this function.

*external external points to an implementation specific structure. Since there is currently

no implementation specific data, NULL should be used.

Return Values
MPIMessageOK if EventNotifyGet successfully gets the current CAN event mask.

See Also meiCanNotifySet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/evtnfyget2.htm [7/22/2004 1:40:43 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/EventMask/DataType/msk1.htm

meiCanEventNotifySet

meiCanEventNotifySet

Declaration long meiCanEventNotiySet(MEICan can,

 MPIEventMask eventMask,

 void *external);

Required Header stdmei.h

Description CanEventNotifySet updates the current CAN event mask.

 can handle to the CAN object.

 eventMask a pointer to the new MPI event mask that will be filled in by this function.

*external external points to an implementation specific structure. Since there is currently no

implementation specific data, NULL should be used.

Return Values
MPIMessageOK if CanEventNotifySet successfully sets the current CAN event mask.

See Also meiCanEventNotifyGet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/evtnfyset2.htm [7/22/2004 1:40:43 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/EventMask/DataType/msk1.htm

meiCanFirmwareDownload

meiCanFirmwareDownload

Declaration long meiCanFirmwareDownload(MEICan can,

 char* filename,
 MEICanCallback callback);

Required Header stdmei.h

Description CanFirmwareDownload allows the user to upgrade the CAN controller’s
firmware.

This operation will take some time (between 10 and 30 seconds) to perform the
download process. Therefore, the callback function is provided to allow the current
status of the download operation to be reported to the calling application and to also
allow the calling application to abort the download if required. The callback
function passes the progress of the download process to the calling application. The
calling applications normally returns a 0 unless it wants to abort the upgrade. If the
upgrade is aborted, it returns a 1.

 can handle to the CAN object

 filename the filename of the CAN controller firmware (*.out file).

callback a pointer to the call back function. (Pass an address of zero if you do not have a

callback function.)

Return Values
MPIMessageOK if CanFirmwareDownload successfully uploads the CAN controller's firmware.

See Also meiCanFirmwareErase | meiCanFirmwareUpload

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/fmwrdnld2.htm [7/22/2004 1:40:50 PM]

meiCanFirmwareErase

meiCanFirmwareErase

Declaration long meiCanFirmwareErase(MEICan can);

Required Header stdmei.h

Description CanFirmwareErase allows the user to erase the CAN controllers firmware.

Return Values
MPIMessageOK if CanFirmwareErase successfully erases the CAN controller's firmware.

See Also meiCanFirmwareDownload | meiCanFirmwareUpload

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/fmwrers2.htm [7/22/2004 1:40:51 PM]

meiCanFirmwareUpload

meiCanFirmwareUpload

Declaration long meiCanFirmwareUpload(MEICan can,

 char* filename,
 MEICanCallback callback);

Required Header stdmei.h

Description CanFirmwareUpload allows the user to get a copy of the current CAN controller’s
firmware.

This operation will take some time (between 10 and 30 seconds) to perform the
upload process. Therefore, the callback function is provided to allow the current
status of the upload operation to be reported to the calling application and to also
allow the calling application to abort the upgrade (if required). The callback
function passes the progress of the upgrade process to the calling application. The
calling applications normally returns 0 unless it wants to abort the upgrade. If the
upgrade is aborted, it returns a 1.

 can handle to the CAN object

 filename the filename of the CAN controller firmware (*.out file).

callback a pointer to the call back function. (Pass an address of zero if you do not have a

callback function.)

Return Values

MPIMessageOK
if CanFirmwareUpload successfully retrieves a copy of the current CAN controller's
firmware.

See Also meiCanFirmwareErase | meiCanFirmwareDownload

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/fmwrupld2.htm [7/22/2004 1:40:51 PM]

meiCanMemory

meiCanMemory

Declaration long meiCanMemory(MEICan can,

 void** memory);

Required Header stdmei.h

Description CanMemory returns a pointer to the base of the CAN processors DPR. This
function is generally not used and is provided for implementing advanced features
of the MPI.

 can handle to the CAN object

 memory a pointer to the base of the CAN processors DPR.

Return Values
MPIMessageOK if CanMemory successfully returns a pointer to the base of the CAN processors DPR.

See Also meiCanMemoryGet | meiCanMemorySet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/mem2.htm [7/22/2004 1:40:51 PM]

meiCanMemoryGet

meiCanMemoryGet

Declaration long meiCanMemoryGet(MEICan can,

 void* dst,
 void* src,
 long count);

Required Header stdmei.h

Description CanMemoryGet copies the specified number of bytes from controller’s memory to
the application's memory. This function is generally not used and is provided for
implementing advanced features of the MPI.

 can handle to the CAN object

 dst the base address of the destination

 src the base address of the source

 count the number of bytes to copy

Return Values

MPIMessageOK
if CanMemoryGet successfully copies the specified number of bytes to the
application's memory.

See Also meiCanMemory | meiCanMemorySet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/memget2.htm [7/22/2004 1:40:52 PM]

meiCanMemorySet

meiCanMemorySet

Declaration long meiCanMemorySet(MEICan can,

 void* dst,
 void* src,
 long count);

Required Header stdmei.h

Description CanMemorySet copies the specified number of bytes from the application's
memory to the controller's memory. This function is generally not used and is
provided for implementing advanced features of the MPI.

 can handle to the CAN object

 dst the base address of the destination

 src the base address of the source

 count the number of bytes to copy

Return Values

MPIMessageOK
if CanMemorySet successfully copies the specified number of bytes to the controller's
memory.

See Also meiCanMemory | meiCanMemoryGet

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Method/memset2.htm [7/22/2004 1:40:52 PM]

MEICanBitRate

MEICanBitRate

MEICanBitRate
 typedef enum {

 MEICanBitRate1000K = 0,
 MEICanBitRate800K,
 MEICanBitRate500K,
 MEICanBitRate250K,
 MEICanBitRate125K,
 MEICanBitRate50K,
 MEICanBitRate20K,
 MEICanBitRate10K
} MEICanBitRate;

Description

CanBitRate enumerates all the valid bit rates that the CANOpen interface can use. These are the
recommended bit rates that the CANOpen standard defines.

For more information see the Bit Rate section.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/bitrat2.htm [7/22/2004 1:40:52 PM]

MEICanBusState

MEICanBusState

MEICanBusState
 typedef enum {

 MEICanBusStateOFF,
 MEICanBusStatePASSIVE,
 MEICanBusStateOPERATIONAL
} MEICanBusState;

Description

CanBusState enumerates the bus states that the controller’s CAN interface can take.

To see how the CanBusState is displayed in Motion Console, click here.

See Also Documentation on CAN Bus State

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/busstate2.htm [7/22/2004 1:40:52 PM]

file:///D|/pdfs/030100/html/Utilities/mocon/mc_23.html#status

MEICanCallback

MEICanCallback

MEICanCallback
 typedef long (*MEICanCallback)(long percentage);

Description

CanCallback is the definition of a call back function used during the firmware download.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/callbak2.htm [7/22/2004 1:40:51 PM]

MEICanCommand

MEICanCommand

MEICanCommand
 typedef struct MEICanCommand {

 MEICanCommandType type;

 long data[6];
} MEICanCommand;

Description CanCommand holds the command request and response for an meiCanCommand.

 type The type of CAN command.

 data Data associated with the command.

See Also meiCanCommand

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/cmd2.htm [7/22/2004 1:40:47 PM]

MEICanCommandType

MEICanCommandType

MEICanCommandType
 typedef enum {

 MEICanCommandTypeSDO_READ,
 MEICanCommandTypeSDO_WRITE,
 MEICanCommandTypeCLEAR_STATUS_BITS,
 MEICanCommandTypeBUS_START,
 MEICanCommandTypeBUS_STOP,
 MEICanCommandTypeNMT_ENTER_PRE_OPERATIONAL,
 MEICanCommandTypeNMT_START_REMOTE_NODE,
 MEICanCommandTypeNMT_STOP_REMOTE_NODE,
 MEICanCommandTypeNMT_RESET_NODE,
 MEICanCommandTypeNMT_RESET_COMMUNICATION,
} MEICanCommandType;

Description CanCommandType enumerates the different type of commands that can be used
with meiCanCommand.

MEICanCommandTypeSDO_READ

This command reads the remote nodes object dictionary using the SDO protocol.

Command data:
data[0] = Node
data[1] = Index
data[2] = SubIndex
data[3] = Length

Returned data:
data[0] = Error code
data[4] = Low Data word
data[5] = High Data word

MEICanCommandTypeSDO_WRITE

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/cmdty2.htm (1 of 4) [7/22/2004 1:40:53 PM]

MEICanCommandType

This issues the CANOpen NMT command "Enter Pre-Operational" to a node.

Command data:
data[0] = Node number, (0 broadcasts to all nodes)

Returned data:
data[0] = Error code

MEICanCommandTypeNMT_START_REMOTE_NODE

This issues the CANOpen NMT command "Start Remote Node" to a node.

Command data:
data[0] = Node number, (0 broadcasts to all nodes)

Returned data:
data[0] = Error code

MEICanCommandTypeNMT_STOP_REMOTE_NODE

This issues the CANOpen NMT command "Stop Remote Node" to a node.

Command data:
data[0] = Node number, (0 broadcasts to all nodes)

Returned data:
data[0] = Error code

MEICanCommandTypeNMT_RESET_NODE

This issues the CANOpen NMT command "Reset Node" to a node.

Command data:
data[0] = Node number, (0 broadcasts to all nodes)

Returned data:
data[0] = Error code

MEICanCommandTypeNMT_RESET_COMMUNICATION

This issues the CANOpen NMT command "Reset Communication" to a node.

Command data:
data[0] = Node number, (0 broadcasts to all nodes)

Returned data:
data[0] = Error code

See Also meiCanCommand

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/cmdty2.htm (3 of 4) [7/22/2004 1:40:53 PM]

MEICanCommandType

This command writes to a remote nodes object dictionary using the SDO protocol.

Command data:
data[0] = Node
data[1] = Index
data[2] = SubIndex
data[3] = Length
data[4] = Low Data word
data[5] = High Data word

Returned data:
data[0] = Error code

MEICanCommandTypeCLEAR_STATUS_BITS

Clear selected MEICanStatusBits.

Command data:
data[0], Bit map of MEICanStatusBits to clear.

Returned data:
data[0] = Error code

MEICanCommandTypeBUS_START

This puts the CAN bus into operational state if it is Bus off.

Command data:
None

Returned data:
data[0] = Error code

MEICanCommandTypeBUS_STOP

This puts the CAN bus into operational state if it is Bus off.

Command data:
None

Returned data:
data[0] = Error code

MEICanCommandTypeNMT_ENTER_PRE_OPERATIONAL

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/cmdty2.htm (2 of 4) [7/22/2004 1:40:53 PM]

MEICanConfig

MEICanConfig

MEICanConfig
 typedef struct MEICanConfig {

 MEICanBitRate bitRate;

 unsigned long cyclicPeriod;
 unsigned long healthPeriod;
 unsigned long nodeNumber;
 unsigned long inhibitTime;
} MEICanConfig;

Description CanConfig holds the configuration of the CAN object. The default state for this
structure is held in the controller's flash. Use the meiCanConfigGet/Set and
meiCanNodeConfigGet/Set to interrogate and change to what the CAN system is
currently using or the default.

bitRate The bit rate the CAN bus uses.

See also CAN Bit Rate.

cyclicPeriod The period (milliseconds) between sending consecutive SYNC messages. A value

of zero will disable the SYNC messages from being produced.
See also CAN Transmission Types.

healthPeriod The period (milliseconds) used for checking the health of nodes. A value of zero
will disable the health checking protocol. For nodes that use the node guarding
protocol, this is the node guarding period. For nodes that use the heartbeating
protocol, this is the heartbeat consumer time (the heartbeat producers are half this
period).
See also CAN Node Health.

nodeNumber The node number of the controller on the CAN network. CANOpen requires that

the master node has a valid node number to implement the heartbeat protocol.
See also CAN Node Numbers.

inhibitTime The global time used for the node health protocols.

See also CAN Transmission Types.

See Also meiCanConfigGet | meiCanConfigSet | meiCanNodeConfigGet | meiCanNodeConfigSet |

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/cf2.htm [7/22/2004 1:40:40 PM]

MEICanDigitalIO

MEICanDigitalIO

MEICanDigitalIO
 typedef struct MEICanDigitalIO {

 unsigned long data[2];
} MEICanDigitalIO;

Description CanDigitalIO holds the state of all the digital inputs or outputs on a CANOpen node.

NOTE: the maximum number of inputs or outputs on a single node supports is 64.

 data Data associated with the command.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/digio2.htm [7/22/2004 1:40:49 PM]

MEICanHealthType

MEICanHealthType

MEICanHealthType
 typedef enum {

 MEICanHealthTypeNODE_GUARDING,
 MEICanHealthTypeHEART_BEATING
} MEICanHealthType;

Description

CanHealthType is used to report the health protocol that the XMP is using with each node.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/healthty2.htm [7/22/2004 1:40:53 PM]

MEICanMessage

MEICanMessage

MEICanMessage
 typedef enum {

 MEICanMessageFIRMWARE_INVALID,
 MEICanMessageFIRMWARE_VERSION,
 MEICanMessageNOT_INITALIZED,
 MEICanMessageIO_NOT_SUPPORTED,
 MEICanMessageFILE_FORMAT_ERROR,
 MEICanMessageUSER_ABORT,
 MEICanMessageCOMMAND_PROTOCOL,
 MPICanMessageINTERFACE_NOT_FOUND,
 MEICanMessageNODE_DEAD,
 MEICanMessageSDO_TIMEOUT,
 MEICanMessageSDO_ABORT,
 MEICanMessageSDO_PROTOCOL,
 MEICanMessageTX_OVERFLOW,
 MEICanMessageRTR_TX_OVERFLOW,
 MEICanMessageRX_BUFFER_EMPTY,
 MEICanMessageBUS_OFF,
 MEICanMessageSIGNATURE_INVALID,
} MEICanMessage;

Description
MEICanMessageFIRMWARE_INVALID

The CAN firmware is not valid. This message code is returned by meiCanCreate(…) if the CAN
hardware bootloader detects no firmware has been loaded or the firmware signature is not recognized.
To correct this problem, download valid firmware with meiCanFirmwareDownload(…).

MEICanMessageFIRMWARE_VERSION

The CAN firmware version does not match the software version. This message code is returned by
meiCanCreate(…), meiCanFirmwareDownload(…), or meiCanFirmwareUpload(…) if the CAN
firmware version is not compatible with the MPI library. To correct this problem, download the proper
firmware version with meiCanFirmwareDownload(…).

MEICanMessageNOT_INITIALIZED

The CAN firmware did not initialize. This message code is returned by meiCanCreate(…) if the
controller did not copy the configuration structure from flash to memory after power-on or controller
reset. To correct this problem, verify the controller firmware is correct and the controller hardware is
operating properly.

MEICanMessageIO_NOT_SUPPORTED

The CAN node does not support the specified I/O. This message code is returned by CAN methods that
read/write to a digital or analog input/output that is out of range. To prevent this problem, specify a
supported I/O bit.

MEICanMessageFILE_FORMAT_ERROR

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/mes2.htm (1 of 3) [7/22/2004 1:40:54 PM]

MEICanMessage

The CAN firmware file format has an error. This message code is returned by
meiCanFirmwareDownload(…) if the specified file has an error in its internal headers. This indicates a
corrupted file. To correct this problem, use the original CAN firmware file or reinstall the software
distribution.

MEICanMessageUSER_ABORT

The CAN firmware loading was aborted. This message code is returned by
meiCanFirmwareDownload(…) or meiCanFirmwareUpload(…) when the firmware loading is aborted
by the user via the callback function. This message code is returned for application notification. It is not
an error.

MEICanMessageCOMMAND_PROTOCOL

The CAN command failed due to a protocol error. This message code is returned by CAN methods that
do not get a valid response from a CAN node. To correct this problem, check your CAN nodes for
proper operation.

MPICanMessageINTERFACE_NOT_FOUND

The CAN interface is not available. This message code is returned by meiCanCreate(…) if the specified
controller does not support a CAN network interface. To correct this problem, use a controller that has a
CAN interface.

MEICanMessageNODE_DEAD

The CAN node does not respond. This message code is returned by CAN methods that read/write from
a CAN node and the node fails the health check. This message code indicates a node hardware or
network connection problem. To correct this problem, verify the node operation and network
connections.

MEICanMessageSDO_TIMEOUT

The CAN command failed due to a timeout. This message code is returned by CAN methods that do not
get a response from a CAN node within the timeout period. To correct this problem, check your CAN
nodes for proper operation.

MEICanMessageSDO_ABORT

The CAN command failed due to a user abort. This message code is returned by CAN methods when an
SDO transaction is aborted.

MEICanMessageSDO_PROTOCOL

The CAN command failed due to an SDO protocol error. This message code is returned by CAN
methods when an SDO transaction fails because the node did not conform to the CANOpen protocol.

MEICanMessageTX_OVERFLOW

The controller's transmit buffer overflowed. This message code is returned by CAN methods that failed
to transmit a message due to an internal memory buffer overflow.

MEICanMessageRTR_TX_OVERFLOW

The controller's transmit buffer overflowed. This message code is returned by CAN methods that failed
to transmit a message due to an internal memory buffer overflow.

MEICanMessageRX_BUFFER_EMPTY

The controller's receive buffer is empty. This message code is returned by CAN methods that expected
to get a response from a CAN node, but the controller's receive buffer was empty.

MEICanMessageBUS_OFF

The CAN network bus is in the off state. This message code is returned by CAN methods that are not
able to use the CAN network because the bus is off. To correct this problem, verify the node operation
and network connections.

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/mes2.htm (2 of 3) [7/22/2004 1:40:54 PM]

MEICanMessage

MEICanMessageSIGNATURE_INVALID

When initialising the CAN system, some tests are performed to make sure that the CAN processor is
returning a valid signature value. If an unexpected signature is returned, this error message is returned.
A probable cause for this error is that the bootloader is invalid. To correct this problem, you will need to
return the controller to MEI to fix the bootloader.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/mes2.htm (3 of 3) [7/22/2004 1:40:54 PM]

MEICanNodeConfig

MEICanNodeConfig

MEICanNodeConfig
 typedef struct MEICanNodeConfig {

 MEICanTransmissionType digitalOutTransmissionType;
 MEICanTransmissionType analogOutTransmissionType;
 MEICanTransmissionType digitalInTransmissionType;
 MEICanTransmissionType analogInTransmissionType;
} MEICanNodeConfig;

Description

CanNodeConfig is the configuration of each node on the CAN bus. You can select which type of
communication (event or cyclic) is to be used for the different types of IO data that a node supports.

For more information, see the CAN Transmission Types section.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/ndcf2.htm [7/22/2004 1:40:40 PM]

MEICanNodeInfo

MEICanNodeInfo

MEICanNodeInfo
 typedef struct MEICanNodeInfo {

 MEICanNodeType type;

 unsigned long digitalInputCount;
 unsigned long digitalOutputCount;
 unsigned long analogInputCount;
 unsigned long analogOutputCount;
 MEICanHealthType healthType;

 unsigned long vendorID;
 unsigned long productCode;
 unsigned long versionNumber;
 unsigned long serialNumber;
} MEICanNodeInfo;

Description

CanNodeInfo describes how many of the different types of I/O are on this node.

type An enumeration indicating the type of node found at startup, or

MEICanNodeTypeNONE if no node was found.

digitalInputCount The number of digital inputs supported by this node. The CANOpen
protocol only allows the number of digital inputs to be interrogated in
multiples of eight, i.e. if a node has two digital inputs then digitalInputCount
will return eight. MEI CANOpen SLICE nodes support an extension to the
CANOpen protocol that allows the exact number of digital inputs to be
returned in this field.

digitalOutputCount The number of digital outputs supported by this node. The CANOpen
protocol only allows the number of digital outputs to be interrogated in
multiples of eight, i.e. if a node has two digital outputs then
digitalOutputCount will return eight. MEI CANOpen SLICE nodes support
an extension to the CANOpen protocol that allows the exact number of
digital outputs to be returned in this field.

 analogInputCount The number of analog inputs supported by this node.

 analogOutputCount The number of analog outputs supported by this node.

healthType The type of health checking protocol being used with this node.

Also see CAN Node Health.

vendorId This is a number read from the node. Vendor ID numbers are unique
numbers allocated to each manufacturer of CANOpen nodes. Not all
CANOpen nodes support this feature, in which case, these nodes will return
zero for this field. MEI CANOpen nodes always return x014Fh.

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/ndinf2.htm (1 of 2) [7/22/2004 1:40:42 PM]

MEICanNodeInfo

productCode This is a number read from the node. The product code is made up of
numbers allocated by each manufacturer to uniquely identify their different
types of nodes. Not all CANOpen nodes support this feature, in which case,
these nodes will return zero for this field. MEI CANOpen SLICE nodes
always return x0204h.

versionNumber This is a number read from the node. The version number identify the
version of code running on this CANOpen node. Not all CANOpen nodes
support this feature, in which case, these nodes will return zero for this field.
MEI CANOpen nodes do support this field.

serialNumber This is a number read from the node. The serial number uniquely identifies
each CANOpen node. Not all CANOpen nodes support this feature, in which
case, these nodes will return zero for this field. MEI CANOpen SLICE
nodes do support this field and the number is also on the side label of the
Network adapter.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/ndinf2.htm (2 of 2) [7/22/2004 1:40:42 PM]

MEICanNodeStatus

MEICanNodeStatus

MEICanNodeStatus
 typedef struct MEICanNodeStatus {

 unsigned long live;
 MEICanNMTState nmtState;

} MEICanNodeStatus;

Description CanNodeStatus holds the current status of a node.

 live Set if the node is alive, clear if the node is dead.

 nmtState The current NMT state that the node is reporting.

See Also Documentation on CAN Node Health.

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/ndsts2.htm [7/22/2004 1:40:41 PM]

MEICanNodeType

MEICanNodeType

MEICanNodeType
 typedef enum {

 MEICanNodeTypeNONE = 0,
 MEICanNodeTypeIO = 401
} MEICanNodeType;

Description

CanNodeType enumerates the different types of nodes that the XMP has detected.
MEICanNodeTypeNONE is returned if no node is found or an unsupported node type is detected.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/ndty2.htm [7/22/2004 1:40:54 PM]

MEICanNMTState

MEICanNMTState

MEICanNMTState
 typedef enum {

 MEICanNMTStateBOOT_UP,
 MEICanNMTStateSTOPPED,
 MEICanNMTStateOPERATIONAL,
 MEICanNMTStatePRE_OPERATIONAL,
 MEICanNMTStateUNKNOWN,
} MEICanNMTSTATE;

Description

CanNMTState enumerates the NMT (network management) states of a node on a CANOpen
network. The XMP's CAN controller will automatically put all nodes into the Operational state
during the initialization of the network.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/nmtstate2.htm [7/22/2004 1:40:54 PM]

MEICanStatus

MEICanStatus

MEICanStatus
 typedef struct MEICanStatus {

 MEICanBusState busState;

 long transmitErrorCounter;
 long receiveErrorCounter;
 long messageRate;
 long tick;
 long softwareReceiveOverflow;
 long hardwareReceiveOverflow;
} MEICanStatus;

Description CanStatus holds the current status of the XMP’s CAN object.

 busState The current bus state of the XMP’s CAN interface.

 transmitErrorCounter The current value of the transmit error counter.

 receiveErrorCounter The current state of the receive error counter.

 messageRate The number of messages received and transmitted per second.

 tick This is incremented every 1ms by the CAN firmware.

softwareReceiveOverflow This bit will be set if software receive buffer has overflowed.

This bit can be cleared by using the CLEAR_STATUS_BITS
command.

hardwareReceiveOverflow This bit will be set if the CAN interface hardware has detected

an overflow. This bit can be cleared by using the
CLEAR_STATUS_BITS command.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/sts2.htm [7/22/2004 1:40:46 PM]

MEICanTransmissionType

MEICanTransmissionType

MEICanTransmissionType
 typedef enum {

 MEICanTransmissionTypeCYCLIC = 0,
 MEICanTransmissionTypeEVENT = 1,
} MEICanTransmissionType;

Description

CanTransmissionType enumerates the transmission types a node can use.

For more information, see the CAN Transmission Types section.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/transmisty2.htm [7/22/2004 1:40:54 PM]

MEICanVersion

MEICanVersion

MEICanVersion
 typedef struct MEICanVersion {

 long bootloaderVersion;
 long firmwareVersion;
 char firmwareRevision;
 long firmwareSubRevision;
} MEICanVersion;

Description CanVersion holds the version information about the XMP’s CAN object.

 bootloaderVersion The version number of the CAN bootloader.

 firmwareVersion The CAN firmware version.

 firmwareRevsion The CAN firmware revision.

 firmwareSubRevision The CAN firmware subrevision.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/DataType/ver2.htm [7/22/2004 1:40:46 PM]

Handling Events

Handling Events
The CAN interface on the XMP generates many different types of asynchronous
events such as:

● a change in the XMP’s bus state
● a change in a node’s health
● a change in the state of an input node’s analog or digital inputs
● an emergency message is transmitted by a node
● a boot message is transmitted by a node
● a lost message is detected by the XMP CAN firmware

The events above have been appended to the standard MPI event handling scheme
in order to provide the user the ability to respond to these events. The diagram below
shows an overview of how events are relayed to the user's application.

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Topics/handle_evts.htm (1 of 2) [7/22/2004 1:40:42 PM]

Handling Events

1. The CANOpen firmware detects one of the CAN events.
2. There is a mask within the XMP firmware that allows only a specified set of events to

reach the host. This mask is interrogated and modified with the meiCanEventNotifyGet
and meiCanEventNotifySet functions.

3. Like all other events in the MPI, the user must install an Event Manager on the host. You
will find the serviceCreate and serviceDelete functions from apputils convenient for
installing an Event Manager.

4. For each thread that needs to know about CAN events, the user will need to create a
notify object, specifying a mask for the required events.

5. The user’s application can use the mpiNotifyEventWait function to either poll or wait for
a CAN event to be generated. A valid event returned from mpiNotifyEventWait may
also contain extra fields of information relevant to the event produced. (ex: the new bus
state or node number).

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Topics/handle_evts.htm (2 of 2) [7/22/2004 1:40:42 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Notify/Method/evtwt1.htm

XMP Overview

XMP Overview
In the example below, the XMP uses a dedicated CAN processor to handle the
network. This ensures that the motion will not be affected by the CAN network. The
XMP operates as a master node on the network with all the I/O nodes being slaves.
This arrangement implies that there may only be one XMP on any CAN Network.

The XMP operates as a master node on the network with all the IO nodes being
slaves. This arrangement implies that there may only be one XMP on any CAN
Network.

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Topics/xmp_overview.htm [7/22/2004 1:40:43 PM]

CAN Bit Rate

CAN Bit Rate
The CANOpen standard defines a set of bit rates that can be supported. Any
CANOpen node must support at least one of these bit rates. All the nodes on the CAN
network must be operating at the same bit rate. Any of these standard bit rates can be
used with the XMP.

Due to the electrical characteristics of a CAN network, the maximum length of a CAN
network (and the corresponding drop lengths) is dependent upon the bit rate that is
chosen. See the table below.

It is recommended that opto-isolated nodes are used on networks with bus lengths
longer than 200m.

CANOpen Bit Rates

Bit Rate Max Bus
Length (m)

Max Drop
Length (m)

Max Cumulative
Drop Length (m)

1M 25* 2 10

800k 50* 3 15

500k 100 6 30

250k 250 12 60

125k 500 24 120

50k 1000 60 300

20k 2500 150 750

10k 5000 300 1500

* No opto-isolation

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Topics/bit_rate.htm [7/22/2004 1:40:39 PM]

CAN Bus State

CAN Bus State
All CAN hardware maintains two error counters that are increased when transmit or
receive errors are detected, and decreased when successful transmissions or
receptions are achieved. In an error free operational system, these counters should
be zero. The magnitude of these counters control the following state machine:

When a node is in the Operational state it will participate fully with all
communications over the network, as the errors increase the CAN hardware will
become Passive (detecting errors but not generating error messages), before turning
Off and isolating the node from the network once the TxErrorCount exceeds 255 error
messages. This feature allows nodes that are either malfunctioning or not configured
correctly to be isolated for the network, thereby allowing the remaining nodes to
successfully communicate.

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Topics/bus_state.htm [7/22/2004 1:40:40 PM]

CAN Emergency Messages

CAN Emergency Messages
Every type of CANOpen node can transmit an emergency message. These messages
are designed to report errors and warnings, as well as fatal problems on a node. The
contents of these emergency messages are very dependent upon the node
manufacturer and node type. To interpret this data, you will need to refer to the node
manufacture’s data. If an emergency message is generated by a node, the event
handling scheme described in the events section below allows the user’s application
to receive the emergency message data.

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Topics/emergency_msg.htm [7/22/2004 1:40:42 PM]

CAN Hardware

CAN Hardware
CANOpen is a serial network that uses a bus topology. The CANOpen bus always
contains two signal wires, CAN+ and CAN-, which carry the differential serial data and
a ground (GND). It is also common for most CANOpen nodes to provide a shield
connection.

Similar to most industrial buses, the signal wires need to be terminated. CANOpen
requires a 120ohm resistor at both ends of the main bus. If these resistors are not
fitted, the network will not function properly. Some node suppliers build the
terminating resistor into the node and provide a jumper or switch to enable it. You will
need to check your nodes' datasheets for the inclusion of a terminating resistor. The
XMP does not have any terminating resistors.

For pinout information, go to the XMP's CAN D-9 connector page.

A CANOpen node either has an opto-isolated or non-isolated interface. The use of
optoisolation is primarily provided as an EMC countermeasure and is used to cope
with potential differences in the ground. These effects are more pronounced for large
machines and cable lengths. Therefore, the use of opto-couplers is recommended for
bus lengths greater that 200m. The disadvantage of opto-couplers is that they reduce
the maximum permissible bus length for a given bit rate.

The XMP CAN interface is available with or without opto-isolation. This option needs
to be specified at the time your XMP is ordered.

Most types of nodes require a separate power supply to drive the local logic and the
I/O interfaces. For nodes that use opto-isolated interfaces, a separate supply of +7 to
24V needs to be provided to power the interface circuitry. The user must also supply
an external 24V to the XMP (CAN_V+) if the opto-isolated interface option is being
used.

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Topics/hardware.htm (1 of 2) [7/22/2004 1:40:41 PM]

file:///D|/pdfs/030100/html/Hardware/SynqNet-XMP/can.htm

CAN Hardware

Each node on the network must have a unique node number, in the range of 1 to 127.
The node number is commonly set with a bank of DIP switches on each node. If two
nodes are given the same node number, network errors are generated and
unpredictable problems will be encountered. The node number of the XMP can be
changed from the factory default of 1 using the meiCanConfigSet function.

In order for all nodes to communicate they must all use the same bit rate. Normally
the bit rate that a node uses is set by DIP switches. If all of the nodes on a CANOpen
network do not use the same bit rate then the whole network or some of the nodes on
the network will not work properly. The bit rate of the XMP is set via software
meiCanConfigSet. See also CAN Bit Rate.

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Topics/hardware.htm (2 of 2) [7/22/2004 1:40:41 PM]

CAN Node Health

CAN Node Health
All networks including CAN are vulnerable to faults such as breaks in the bus wiring or
loss of power by some of the nodes. CANopen defines two methods for the master
node (the XMP in our case) to periodically check the presence of nodes on the
network—node guarding and heart beating.

Using these services the XMP can monitor the health of the communications to each
of the nodes. The current health of each node is reported in the live field of the
MEICANNodeStatus structure.

It is mandatory for a node to either support the node guarding or heart beating
protocols, or to support both. The heartbeat protocol has recently been introduced to
CANOpen (in June 1999), and will probably NOT be supported on many nodes, but its
adoption is recommended for all new nodes. The XMP’s implementation will operate
with either protocol and will automatically detect the protocol that each node supports
and then use the most appropriate protocol for the CAN network. The healthType field
of the MEICanNodeInfo structure reports the health checking protocol being used with
each node.

Node Guarding protocol

The Node Guarding protocol has the master sending an RTR message to all nodes
on the network and checks to see whether a response is received from each of the
nodes.

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Topics/nd_health.htm (1 of 3) [7/22/2004 1:40:41 PM]

CAN Node Health

Heart Beating protocol

In the Heart Beating protocol, each node periodically broadcasts a heartbeat
message. The period between transmitting the heartbeat messages is half the health
period. If the XMP does not receive a message within a specific time window, it
generates a heartbeat error for that node.

The advantage of the Heart Beating protocol over the Node Guarding protocol is that
the number of messages is reduced in half, thereby freeing up bandwidth for other
messages.

Health Period

The healthPeriod field of the MEICanConfig structure allows the user to specify the
Node Guard and Heartbeat times for the health protocols according to the following
table. The same period is used for all nodes.

Node Health Times
Protocol Times Value

Node Guard Time healthPeriod

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Topics/nd_health.htm (2 of 3) [7/22/2004 1:40:41 PM]

CAN Node Health

Heartbeat Producer Time healthPeriod / 2

Heatbeat Consumer Time healthPeriod

For most applications it is recommended that the healthPeriod should be set to ten
times the cyclic period.

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Topics/nd_health.htm (3 of 3) [7/22/2004 1:40:41 PM]

CAN Node Numbers

CAN Node Numbers
Each node on the network must have a unique node number, in the range of 1 to 127.
The node number is commonly set with a bank of DIP switches on each node. If two
nodes are given the same node number, network errors are generated and
unpredictable problems will be encountered. The node number of the XMP can be
changed from the factory default of 1 using the meiCanConfigSet function.

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Topics/nd_num.htm [7/22/2004 1:40:53 PM]

CAN Transmission Types

CAN Transmission Types
Introduction

The XMP CANOpen interface uses four messages (serial packets of data on the CAN
bus) to pass I/O data between the XMP and an I/O node. Each message contains
either the digital input, digital output, analog input, or analog output data. The XMP
supports two standard communication methods to transmit I/O data between the XMP
and each of the I/O nodes—cyclic transmission and event transmission. For most
applications, cyclic messaging (the default) will be sufficient, but the transmission type
fields within the MEICanNodeConfig structure allow the user to select an alternative
transmission type for each of the I/O messages going to and from a node.

Cyclic Transmission

The Cyclic Transmission type, transfers I/O data messages between the XMP and the
nodes using a cyclic protocol. The trigger for each cycle is a synchronization message
that is transmitted at a regular rate by the XMP. When a node receives the
synchronization message, it latches and transmits the current state of its inputs.
Immediately after receiving the synchronization message, the master also transmits
command messages to all the nodes with their new output states, which will get
applied on the next synchronization message. An idle period is also needed to allow
time for any non-cyclic messages to be transmitted.

The advantage of this scheme is that it generates a predicable loading of data on the
bus. The latency on transmitted data is predictable, but the latency is not the absolute
minimum that can be achieved.

Cyclic Period

The cyclicPeriod field within the MEICanConfig structure allows the user to specify the
period (in milliseconds) that the XMP will use between the successive transmission of
synchronization messages. The minimum cyclic period that can be used is dependent
upon the chosen bit rate and the number of nodes. Assuming that all the nodes have

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Topics/trans_type.htm (1 of 3) [7/22/2004 1:40:39 PM]

CAN Transmission Types

inputs and outputs that are analog and digital, the minimum cyclic period that can be
used is given in the following table.

CANOpen Cyclic Period
Bit Rate < 5 Nodes < 10 Nodes < 50 Nodes < 128 Nodes

1M 3 5 30 60

800k 3 6 30 80

500k 5 10 50 200

250k 10 18 89 300

125k 19 36 200 500

50k 46 90 500 2000

20k 200 300 2000 3000

10k 300 500 3000 6000

Event Transmission

The Event Transmission type, only transmits I/O data messages when an “event”
occurs on the source node (either the XMP or the I/O node) to change the I/O data.
The event that forces the transmission is either a new state of an input that is
detected on an I/O node or a new output state that is commanded on the XMP.

The advantage of this type of messaging is that short reaction times are attainable,
but this is accomplished at the expense of variable network traffic, and the possibility
of saturating the network. In many cases, the reaction time is not significant in relation
to other time delays in the system (ex: the user’s application or delays in task
switching).

Inhibit Time

If the source node’s events occur at a very fast rate, the number of messages
generated can swamp the network and consequently block out other messages. To
prevent an excess of messages, nodes can optionally support inhibit times for their
transmit PDOs. This value defines the minimum time between two successive PDO

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Topics/trans_type.htm (2 of 3) [7/22/2004 1:40:39 PM]

CAN Transmission Types

messages.

The inhibitTime field within the MEICanConfig structure allows the user to specify the
period (in milliseconds) that all nodes on the network will use. A reasonable inhibit
time is half a cyclic period.

file:///D|/pdfs/030100/html/Software-MPI/docs/CAN/Topics/trans_type.htm (3 of 3) [7/22/2004 1:40:39 PM]

	CAN Objects
	Methods
	mpiCanCreate
	meiCanDelete
	meiCanValidate
	meiCanConfigGet
	meiCanConfigSet
	meiCanFlashConfigGet
	meiCanFlashConfigSet
	meiCanStatus
	meiCanVersion
	meiCanCommand
	meiCanNodeConfigGet
	meiCanNodeConfigSet
	meiCanNodeFlashConfigGet
	meiCanNodeFlashConfigSet
	meiCanNodeStatus
	meiCanNodeInfo
	meiCanNodeAnalogInputGet
	meiCanNodeAnalogOutputGet
	meiCanNodeAnalogOutputSet
	meiCanNodeDigitalInputGet
	meiCanNodeDigitalInputsGet
	meiCanNodeDigitalOutputGet
	meiCanNodeDigitalOutputsGet
	meiCanNodeDigitalOutputSet
	meiCanNodeDigitalOutputsSet
	meiCanEventNotifyGet
	meiCanEventNotifySet
	meiCanFirmwareDownload
	meiCanFirmwareErase
	meiCanFirmwareUpload
	meiCanMemory
	meiCanMemoryGet
	meiCanMemorySet

	Data Types
	MEICanBitRate
	MEICanBusState
	MEICanCallback
	MEICanCommand
	MEICanCommandType
	MEICanConfig
	MEICanDigitalIO
	MEICanHealthType
	MEICanMessage
	MEICanNodeConfig
	MEICanNodeInfo
	MEICanNodeStatus
	MEICanNodeType
	MEICanNMTState
	MEICanStatus
	MEICanTransmissionType
	MEICanVersion

	Topics
	Handling Events
	XMP Overview
	CAN Bit Rate
	CAN Bus State
	CAN Emergency Messages
	CAN Hardware
	CAN Node Health
	CAN Node Numbers
	CAN Transmission Types

